Sterically stabilized liposomes: physical and biological properties. 1994

M C Woodle, and M S Newman, and J A Cohen
Liposome Technology, Inc., Menlo Park, CA 94025.

Advanced liposomal therapeutics has been attained by liposome surface modification, initially with specific glycolipids and subsequently with surface-grafted PEG, reducing in vivo rapid recognition and uptake, giving prolonged blood circulation, and providing selective localization in tumors and other pathological sites, as described in recent reviews. The result is improved efficacy of encapsulated agents. The surface PEG may produce a steric barrier, as described for colloids. Reduced in vivo uptake may result from inhibition of plasma-protein adsorption, or opsonization, by the steric coating. Several physical studies support this mechanism, including electrophoretic mobility (zeta potential). Our previous results for 2000-dalton PEG indicated a coating thickness about 5 nm, in agreement with independent measurements. We report here results for 750 to 5000-dalton PEGs. The calculated coating thickness increases with molecular weight in a nonlinear fashion. The dependence of blood circulation and tissue distribution on PEG molecular weight correlates with zeta-potential estimates of PEG-coating thickness. Effects on tissue distribution are reported for liver and spleen, the major phagocytic organs. The biological properties of these liposomes depend on the surface polymer rather than the lipid bilayer, yielding important advantages for lipid-mediated control of drug interaction and release without affecting the biodistribution.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008297 Male Males
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

M C Woodle, and M S Newman, and J A Cohen
August 1992, Biochimica et biophysica acta,
M C Woodle, and M S Newman, and J A Cohen
January 2000, Journal of controlled release : official journal of the Controlled Release Society,
M C Woodle, and M S Newman, and J A Cohen
January 2004, Methods in enzymology,
M C Woodle, and M S Newman, and J A Cohen
April 1996, Nature,
M C Woodle, and M S Newman, and J A Cohen
March 2001, Biochimica et biophysica acta,
M C Woodle, and M S Newman, and J A Cohen
January 1994, Artificial cells, blood substitutes, and immobilization biotechnology,
M C Woodle, and M S Newman, and J A Cohen
January 2002, Investigative ophthalmology & visual science,
M C Woodle, and M S Newman, and J A Cohen
April 1999, Current opinion in molecular therapeutics,
M C Woodle, and M S Newman, and J A Cohen
January 2005, Methods in enzymology,
Copied contents to your clipboard!