Nitric oxide-related oxidants in acute lung injury. 1995

J A Royall, and N W Kooy, and J S Beckman
Department of Pediatrics, University of Iowa, Iowa City, USA.

Nitric oxide (NO.) is a free radical and will react efficiently with other radicals. The reaction between NO. and superoxide anion (O2.-) is a pivotal reaction by which NO. affects oxidant metabolism. This reaction may scavenge O2.- before further reactions can occur that lead to the biosynthesis of more potent oxidants such as hydroxyl radical. The product of the reaction between NO. and O2.-, however, is peroxynitrite anion, which is also a potent oxidant capable of participating in several oxidative reactions. Among these reactions are oxidation of sulfhydryl groups, oxidation of lipids, and nitration of tyrosine by noncatalyzed and catalyzed mechanisms. The conformation, and therefore specific reactivity, of peroxynitrite are dependent on pH. Based on an understanding of this concept, sulfhydryl oxidation should be the predominant oxidative reaction of peroxynitrite in biological systems. Some experimental data support this conclusion. There is increasing evidence from isolated cell systems that peroxynitrite is produced under the influence of inflammatory mediators. Most data from animal models suggest that increased NO. production in acute lung injury is detrimental. We have performed immunohistochemical evaluation of lung tissue from pediatric patients with acute lung injury using an antinitrotyrosine antibody and have found evidence of extensive nitrotyrosine formation. This observation suggests a significant effect of peroxynitrite on lung tissue in this disorder. NO. has a variety of nonoxidant effects that also may also have a role in acute lung injury. With the information currently available, one cannot conclude with certainty whether the net effect of increased NO. production in inflammatory disorders of the lung is beneficial or injurious. However, simultaneous increases in NO. and O2.- occurring during inflammation may lead to peroxynitrite formation and subsequent oxidative tissue injury.

UI MeSH Term Description Entries
D008171 Lung Diseases Pathological processes involving any part of the LUNG. Pulmonary Diseases,Disease, Pulmonary,Diseases, Pulmonary,Pulmonary Disease,Disease, Lung,Diseases, Lung,Lung Disease
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

J A Royall, and N W Kooy, and J S Beckman
November 1998, Intensive care medicine,
J A Royall, and N W Kooy, and J S Beckman
July 2004, JAMA,
J A Royall, and N W Kooy, and J S Beckman
September 2000, Clinics in chest medicine,
J A Royall, and N W Kooy, and J S Beckman
January 2016, Medical gas research,
J A Royall, and N W Kooy, and J S Beckman
January 2005, Proceedings of the American Thoracic Society,
J A Royall, and N W Kooy, and J S Beckman
August 1997, Acta anaesthesiologica Scandinavica,
J A Royall, and N W Kooy, and J S Beckman
December 2005, Vascular pharmacology,
J A Royall, and N W Kooy, and J S Beckman
December 2003, Acta pharmacologica Sinica,
J A Royall, and N W Kooy, and J S Beckman
July 2023, Cureus,
Copied contents to your clipboard!