Transfer ribonucleic acid biosynthesis. Substrate specificity of ribonuclease P. 1976

F J Schmidt, and J G Seidman, and R M Bock

Bacteriophage T4 synthesizes proline and serine tRNA species which are derived from a common precursor RNA. The processing of this precursor RNA involves the replacement of a U-A-A terminus in serine tRNA by C-C-A prior to precursor cleavage. In the present work we have examined in detail the cleavage of T4 proline-serine precursor RNA by the previously identified ribonuclease P. Ribonuclease P accurately cleaves precursor RNA terminating in either C-C-A or U-A-A to generate the 5' termini characteristic of both mature tRNA species. These cleavages do not depend solely on the nucleotide sequence of the precursor RNA since isolated oligonucleotides spanning the cleavage sites are not substrates for the enzyme. Two types of experiments show that RNase P kinetically favors precursor RNA ending C-C-A over that ending U-A-A. Isolated preparations of precursor RNA containing the C-C-A sequence were cleaved more rapidly by RNase P than precursor RNA ending U-A-A. In addition, the serine tRNA generated by limited cleavage of a mixed population of precursor RNA ending C-C-A or U-A-A was enriched 3-fold in the C-A-A sequence relative to the starting material. Bacteriophage T4 proline-serine precursor RNA, in contrast to other tRNA precursors, accumulates in measurable amounts in wild type cells. This accumulation would appear to be a consequence of the requirement for the generation of the C-C-A sequence prior to RNase P cleavage. The enzymic specificity of RNase P in vitro therefore reflects the in vivo pathway for serine tRNA biosynthesis, where the C-C-A sequence is synthesized while the serine tRNA sequence is still a part of the large precursor RNA.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009694 Nucleic Acid Precursors Use for nucleic acid precursors in general or for which there is no specific heading. Acid Precursors, Nucleic,Precursors, Nucleic Acid
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine

Related Publications

F J Schmidt, and J G Seidman, and R M Bock
December 1971, Journal of bacteriology,
F J Schmidt, and J G Seidman, and R M Bock
February 1974, The Journal of biological chemistry,
F J Schmidt, and J G Seidman, and R M Bock
December 1964, Biochimica et biophysica acta,
F J Schmidt, and J G Seidman, and R M Bock
June 1976, Proceedings of the National Academy of Sciences of the United States of America,
F J Schmidt, and J G Seidman, and R M Bock
September 1971, The Journal of biological chemistry,
F J Schmidt, and J G Seidman, and R M Bock
April 1972, The Biochemical journal,
Copied contents to your clipboard!