Silica radical-induced DNA damage and lipid peroxidation. 1994

X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
Laboratory of Experimental Pathology, National Cancer Institute, Bethesda, Maryland 20892.

In recent years, more attention has been given to the mechanism of disease induction caused by the surface properties of minerals. In this respect, specific research needs to be focused on the biologic interactions of oxygen radicals generated by mineral particles resulting in cell injury and DNA damage leading to fibrogenesis and carcinogenesis. In this investigation, we used electron spin resonance (ESR) and spin trapping to study oxygen radical generation from aqueous suspensions of freshly fractured crystalline silica. Hydroxyl radical (.OH), superoxide radical (O2.-) and singlet oxygen (1O2) were all detected. Superoxide dismutase (SOD) partially inhibited .OH yield, whereas catalase abolished .OH generation. H2O2 enhanced .OH generation while deferoxamine inhibited it, indicating that .OH is generated via a Haber-Weiss type reaction. These spin trapping measurements provide the first evidence that aqueous suspensions of silica particles generate O2.- and 1O2. Oxygen consumption measurements indicate that freshly fractured silica uses molecular oxygen to generate O2.- and 1O2. Electrophoretic assays of in vitro DNA strand breakages showed that freshly fractured silica induced DNA strand breakage, which was inhibited by catalase and enhanced by H2O2. In an argon atmosphere, DNA damage was suppressed, showing that molecular oxygen is required for the silica-induced DNA damage. Incubation of freshly fractured silica with linoleic acid generated linoleic acid-derived free radicals and caused dose-dependent lipid peroxidation as measured by ESR spin trapping and malondialdehyde formation. SOD, catalase, and sodium benzoate inhibited lipid peroxidation by 49, 52, and 75%, respectively, again showing the role of oxygen radicals in silica-induced lipid peroxidation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D012822 Silicon Dioxide Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid. Silica,Aerosil,Aerosil 380,Cristobalite,Quso G-32,Quso G32,Tridymite,380, Aerosil,Dioxide, Silicon,G32, Quso,Quso G 32
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D019787 Linoleic Acid A doubly unsaturated fatty acid, occurring widely in plant glycosides. It is an essential fatty acid in mammalian nutrition and is used in the biosynthesis of prostaglandins and cell membranes. (From Stedman, 26th ed) 9,12-Octadecadienoic Acid,Linoleate,9-trans,12-trans-Octadecadienoic Acid,Linoelaidic Acid,Linoelaidic Acid, (E,Z)-Isomer,Linoleic Acid, (E,E)-Isomer,Linoleic Acid, (Z,E)-Isomer,Linoleic Acid, (Z,Z)-Isomer,Linoleic Acid, (Z,Z)-Isomer, 14C-Labeled,Linoleic Acid, Ammonium Salt, (Z,Z)-Isomer,Linoleic Acid, Calcium Salt, (Z,Z)-Isomer,Linoleic Acid, Potassium Salt, (Z,Z)-Isomer,Linoleic Acid, Sodium Salt, (E,E)-Isomer,Linoleic Acid, Sodium Salt, (Z,Z)-Isomer,Linolelaidic Acid,cis,cis-9,12-Octadecadienoic Acid,trans,trans-9,12-Octadecadienoic Acid,9 trans,12 trans Octadecadienoic Acid,9,12 Octadecadienoic Acid,Acid, 9,12-Octadecadienoic

Related Publications

X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
October 1994, Cancer letters,
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
December 2004, Biochemistry,
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
October 1997, Nutrition (Burbank, Los Angeles County, Calif.),
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
March 2005, Postepy higieny i medycyny doswiadczalnej (Online),
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
January 2004, Redox report : communications in free radical research,
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
March 1999, Mutation research,
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
December 2002, Toxicology,
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
June 1991, Cancer letters,
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
December 1991, Cancer letters,
X Shi, and Y Mao, and L N Daniel, and U Saffiotti, and N S Dalal, and V Vallyathan
September 1989, Mutation research,
Copied contents to your clipboard!