Integration vectors for antibody chimerization by homologous recombination in hybridoma cells. 1995

C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
GSF-Institut für Immunologie, München, Germany.

Gene targeting in hybridoma cells provides a tool for generating chimeric antibodies with great ease and at high yield. We present an evaluation of integration vectors for the chimerization of the immunoglobulin heavy chain locus which are universally applicable to hybridomas of different isotypes and mouse strains. There are three problems arising with vector integration: (i) the frequent persistence of the parental isotype; (ii) an isotype-dependent aberrant replacement-like recombination giving rise to antibodies devoid of the CH1 domain; and (iii) secondary recombinations leading to excision of the integrated sequence. To overcome these problems, we have systematically evaluated the consequences of extending the vector flank. Although the homology length clearly determines the recombination frequency, this effect is counteracted by the secondary recombination, which also correlates to the homology length. In contrast, the truncating recombination events are not dependent on the homology length and never lead to re-excision of the construct. To take advantage of the increased genetic stability obtained with short flanks, we constructed an enrichment vector which yields high recombination efficiencies despite using a short flanking sequence. In addition, irradiation of the cells enhanced homologous recombination. The problem of the co-production of two isotypes was overcome by a two-step targeting reaction.

UI MeSH Term Description Entries
D007132 Immunoglobulin Isotypes The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties. Antibody Class,Ig Isotype,Ig Isotypes,Immunoglobulin Class,Immunoglobulin Isotype,Antibody Classes,Immunoglobulin Classes,Class, Antibody,Class, Immunoglobulin,Classes, Antibody,Classes, Immunoglobulin,Isotype, Ig,Isotype, Immunoglobulin,Isotypes, Ig,Isotypes, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
January 1994, Cancer research,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
November 1989, Proceedings of the National Academy of Sciences of the United States of America,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
March 1994, Current genetics,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
September 1990, Molecular and cellular biology,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
May 1999, Journal of immunological methods,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
February 2002, Molecular therapy : the journal of the American Society of Gene Therapy,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
February 2014, Biochemical and biophysical research communications,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
September 1992, Nucleic acids research,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
September 1992, Gene,
C Kardinal, and E Hooijberg, and P Lang, and R Zeidler, and R Mocikat
July 1996, Journal of virology,
Copied contents to your clipboard!