Transcriptional regulation of the vacuolar H(+)-ATPase B2 subunit gene in differentiating THP-1 cells. 1995

B S Lee, and D M Underhill, and M K Crane, and S L Gluck
Department of Medicine/Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Monocyte-macrophage differentiation was used as a model system for studying gene regulation of the human vacuolar H(+)-ATPase (V-ATPase). We examined mRNA levels of various V-ATPase subunits during differentiation of both native monocytes and the cell line THP-1, and found that transcriptional and post-transcriptional mechanisms could account for increases in cell V-ATPase content. From nuclear runoff experiments, we found that one subunit in particular, the B2 isoform (Mr = 56,000), was amplified primarily by transcriptional means. We have begun to examine the structure of the B2 subunit promoter region. Isolation and sequencing of the first exon and 5'-flanking region of this gene reveal a TATA-less promoter with a high G + C content. Primer extension and ribonuclease protection analyses indicate a single major transcriptional start site. We transfected promoter-luciferase reporter plasmids into THP-1 cells to define sequences that mediate transcriptional control during monocyte differentiation. We found that sequences downstream from the transcriptional start site were sufficient to confer increased expression during THP-1 differentiation. DNase I footprinting and sequence analysis revealed the existence of multiple AP2 and Sp1 binding sites in the 5'-untranslated and proximal coding regions.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

B S Lee, and D M Underhill, and M K Crane, and S L Gluck
December 1997, FEBS letters,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
December 2007, Journal of bioenergetics and biomembranes,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
December 2006, Cell death and differentiation,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
November 2010, The Journal of biological chemistry,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
January 1992, Biochemical and biophysical research communications,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
December 1996, Biochimica et biophysica acta,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
July 1995, Gene,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
July 2004, American journal of physiology. Cell physiology,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
October 1996, The Biochemical journal,
B S Lee, and D M Underhill, and M K Crane, and S L Gluck
January 2000, The Journal of biological chemistry,
Copied contents to your clipboard!