Histone H4 proximal promoter mediates a complex transcriptional response during differentiation of 3T3L1 adipocytes. 1995

A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA.

We have investigated the promoter element(s) required by the cell cycle regulated FO108 human histone H4 gene for control of gene expression during adipocyte proliferation and differentiation. Stable 3T3L1 cell lines were established that express fusion genes in which the histone H4 promoter is joined to chloramphenicol acetyltransferase (cat) as a reporter gene. Expression of the H4CAT fusion genes was monitored in proliferating and confluent 3T3L1 preadipocytes and in differentiating 3T3L1 adipocytes. The results indicate that the H4 cell cycle element (CCE), which mediates S phase-specific stimulation of H4 gene transcription, is not required for transcriptional regulation during differentiation. Instead, a minimal H4 promoter (nucleotides -46 to -11) is sufficient to mediate the complex transcriptional response of H4 gene expression observed during the process of adipocyte differentiation of 3T3L1 cells. In addition, the data suggest that down-regulation of histone gene expression during cellular differentiation may be mediated by passive inactivation of the promoter due to loss of positive regulatory factor(s).

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015500 Chloramphenicol O-Acetyltransferase An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
July 1995, Journal of cellular biochemistry,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
June 2016, Biochemical and biophysical research communications,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
May 2004, The Journal of biological chemistry,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
February 1985, Molecular and cellular biology,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
March 1987, Molecular and cellular biology,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
July 2011, Molecular biology of the cell,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
May 1997, Nature,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
February 2010, Proceedings of the National Academy of Sciences of the United States of America,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
August 1977, European journal of biochemistry,
A L Ramsey-Ewing, and R Bortell, and G S Stein, and J L Stein
November 2022, Nature communications,
Copied contents to your clipboard!