Filamin and gelsolin influence Ca(2+)-sensitivity of smooth muscle thin filaments. 1994

N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
Department of Biochemistry, School of Biology, Moscow State University, Russia.

Sheep aorta thin filaments were prepared by ultracentrifugation of an ATP-containing extract in the presence of different concentrations of ethanediol. Thin filaments prepared without ethanediol contained small quantities of tropomyosin (0.027 Tm:actin) and caldesmon (0.017 CD:actin) and activated the MgATPase of skeletal myosin independently of Ca2+. Ultracentrifugation in the presence of 10-20% ethanediol resulted in preparation of thin filaments with increased content of tropomyosin (0.17 Tm:actin) and caldesmon (0.04 CD:actin). These thin filaments possessed high Ca(2+)-sensitivity in activation of skeletal muscle myosin ATPase. Besides actin, tropomyosin and caldesmon, thin filaments contained gelsolin and filamin. Gelsolin content (0.007 gelsolin:actin) was independent of the presence of ethanediol. The filamin content decreased from 0.015 to 0.007 mol:mol actin when the ethanediol concentration was increased from 0 to 20%, and was negatively correlated with the Ca2+ sensitivity of thin filaments. In a reconstituted system, pure filamin or gelsolin affected caldesmon regulation of actomyosin ATPase. Gelsolin (0.01:actin) reduced the inhibition of actomyosin ATPase caused by caldesmon and increased the potency of Ca(2+)-calmodulin in reversing this inhibition. Filamin (0.007:actin) also decreased the inhibitory action of caldesmon on actin-activated myosin ATPase and also potentiated the reversal of this inhibition by calmodulin. We conclude that minor components of smooth muscle thin filaments (gelsolin and filamin) significantly modify caldesmon mediated regulation of actomyosin ATPase. We suggest a tropomyosin-mediated mechanism by which filamin or gelsolin could exert similar effects.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000205 Actomyosin A protein complex of actin and MYOSINS occurring in muscle. It is the essential contractile substance of muscle.

Related Publications

N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
January 1993, Biochemical and biophysical research communications,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
January 1990, The Journal of cell biology,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
April 1989, Journal of muscle research and cell motility,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
April 1990, Journal of muscle research and cell motility,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
December 1997, Journal of molecular biology,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
June 1991, Journal of muscle research and cell motility,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
July 1997, Sheng li ke xue jin zhan [Progress in physiology],
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
January 1996, Advances in biophysics,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
January 1992, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie,
N B Gusev, and K Pritchard, and J L Hodgkinson, and S B Marston
February 1980, The Biochemical journal,
Copied contents to your clipboard!