Pathways of processing of the gastrin precursor in rat antral mucosa. 1995

A Varro, and S Voronina, and G J Dockray
Physiological Laboratory, University of Liverpool, United Kingdom.

The precursor of the acid-stimulating hormone gastrin gives rise to multiple peptides differing markedly in biological activity, but the relevant biosynthetic pathways are poorly understood. We have used antibodies to amidated gastrins, gastrins with COOH-terminal glycine (Gly) gastrins with COOH-terminal hydroxyglycine (GlyOH) and to the COOH terminus of progastrin, to immunoprecipitate peptides labeled with [35S]sulfate or [3H]tyrosine during incubation of rat antral mucosa in vitro. Labeled progastrin was detectable after 30 min of continuous incubation with isotopic precursors, G34 and G34-Gly after 60 min, and G17 and G17-Gly after 120 min. Pulse chase experiments indicated that progastrin is converted to G34-Gly which then follows one of two pathways: (a) hydroxylation of COOH-terminal Gly and conversion to G34 followed by cleavage yielding G17, or (b) cleavage to G17-Gly. The kinetics of G17-Gly and G17 labeling were similar, suggesting that G17-Gly is a product in its own right, and not simply an intermediate in G17 synthesis. Since the two peptides are reported to have distinct biological activities, they appear to be alternative mature products of progastrin processing.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011706 Pyloric Antrum The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS). Antrum, Pyloric,Gastric Antrum,Antrum, Gastric,Antrums, Gastric,Antrums, Pyloric,Gastric Antrums,Pyloric Antrums
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D005755 Gastrins A family of gastrointestinal peptide hormones that excite the secretion of GASTRIC JUICE. They may also occur in the central nervous system where they are presumed to be neurotransmitters. Gastrin
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium

Related Publications

A Varro, and S Voronina, and G J Dockray
August 1979, Cell and tissue research,
A Varro, and S Voronina, and G J Dockray
March 1987, Regulatory peptides,
A Varro, and S Voronina, and G J Dockray
January 1983, Nature,
A Varro, and S Voronina, and G J Dockray
July 1988, Acta pathologica japonica,
A Varro, and S Voronina, and G J Dockray
December 1987, The American journal of physiology,
A Varro, and S Voronina, and G J Dockray
January 1970, Naunyn-Schmiedebergs Archiv fur Pharmakologie,
A Varro, and S Voronina, and G J Dockray
January 1976, Surgical forum,
A Varro, and S Voronina, and G J Dockray
November 1971, British medical journal,
A Varro, and S Voronina, and G J Dockray
June 2000, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
A Varro, and S Voronina, and G J Dockray
January 1990, Domestic animal endocrinology,
Copied contents to your clipboard!