Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat. 1995

A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322.

The m2 muscarinic acetylcholine receptor gene is expressed at high levels in basal forebrain, but the paucity of information about localization of the encoded receptor protein has limited the understanding of cellular and subcellular mechanisms involved in cholinergic actions in this region. The present study sought to determine the cellular localization of m2 protein, its relationship to cholinergic neurons, and its pre- and postsynaptic distribution in the rat medial septum-diagonal band complex using immunocytochemistry with polyclonal rabbit antibodies and a newly developed rat monoclonal antibody specific to the m2 receptor. Light microscopic colocalization studies demonstrated that m2 was present in a subset of choline acetyltransferase immunoreactive neurons, in choline acetyltransferase-negative neurons, and in more neuropil elements than was choline acetyltransferase. Intraventricular injections of 192 IgG-saporin, an immunotoxin directed to the low-affinity nerve growth factor receptor, resulted in depletion of choline acetyltransferase-immunoreactive neurons in the medial septum-diagonal band complex, whereas m2 immunoreactivity in neurons and in the neuropil was unchanged. By electron microscopy, m2 receptor in medial septum-diagonal band complex was localized to the plasmalemma of a small population of small to medium-sized neurons, and it was also found in dendrites, axons, and axon terminals in the neuropil. Neurons expressing m2 immunoreactivity received synaptic contacts from unlabelled axon terminals. A small distinct subpopulation of large neurons, unlabelled by m2 immunoreactivity, received synaptic contacts from m2-immunoreactive terminals. Thus, m2 receptor is situated to mediate the local effects of acetylcholine on basal forebrain cholinergic and noncholinergic neurons and, also, at both pre- and postsynaptic sites.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline

Related Publications

A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
December 1999, Journal of neurocytology,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
July 1993, The Journal of physiology,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
December 1985, Biochemical Society transactions,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
January 1988, Neuroscience letters,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
March 1999, Neuroscience,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
March 1982, The Journal of comparative neurology,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
January 1994, Journal of neuroimmunology,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
February 1987, Biochemical Society transactions,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
September 1985, The Journal of comparative neurology,
A I Levey, and S M Edmunds, and S M Hersch, and R G Wiley, and C J Heilman
January 1990, Neurochemistry international,
Copied contents to your clipboard!