Energetics of bacterial growth: balance of anabolic and catabolic reactions. 1995

J B Russell, and G M Cook
USDA Agricultural Research Service, Cornell University, Ithaca, New York 14853.

Biomass formation represents one of the most basic aspects of bacterial metabolism. While there is an abundance of information concerning individual reactions that result in cell duplication, there has been surprisingly little information on the bioenergetics of growth. For many years, it was assumed that biomass production (anabolism) was proportional to the amount of ATP which could be derived from energy-yielding pathways (catabolism), but later work showed that the ATP yield (YATP) was not necessarily a constant. Continuous-culture experiments indicated that bacteria utilized ATP for metabolic reactions that were not directly related to growth (maintenance functions). Mathematical derivations showed that maintenance energy appeared to be a growth rate-independent function of the cell mass and time. Later work, however, showed that maintenance energy alone could not account for all the variations in yield. Because only some of the discrepancy could be explained by the secretion of metabolites (overflow metabolism) or the diversion of catabolism to metabolic pathways which produced less ATP, it appeared that energy-excess cultures had mechanisms of spilling energy. Bacteria have the potential to spill excess ATP in futile enzyme cycles, but there has been little proof that such cycles are significant. Recent work indicated that bacteria can also use futile cycles of potassium, ammonia, and protons through the cell membrane to dissipate ATP either directly or indirectly. The utility of energy spilling in bacteria has been a curiosity. The deprivation of energy from potential competitors is at best a teleological explanation that cannot be easily supported by standard theories of natural selection. The priming of intracellular intermediates for future growth or protection of cells from potentially toxic end products (e.g., methylglyoxal) seems a more plausible explanation.

UI MeSH Term Description Entries
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D015219 Substrate Cycling A set of opposing, nonequilibrium reactions catalyzed by different enzymes which act simultaneously, with at least one of the reactions driven by ATP hydrolysis. The results of the cycle are that ATP energy is depleted, heat is produced and no net substrate-to-product conversion is achieved. Examples of substrate cycling are cycling of gluconeogenesis and glycolysis pathways and cycling of the triglycerides and fatty acid pathways. Rates of substrate cycling may be increased many-fold in association with hypermetabolic states resulting from severe burns, cold exposure, hyperthyroidism, or acute exercise. Futile Cycling,Futile Cycles,Futile Substrate Cycles,Futile Substrate Cycling,Cycle, Futile,Cycle, Futile Substrate,Cycles, Futile,Cycles, Futile Substrate,Cycling, Futile,Cycling, Futile Substrate,Cycling, Substrate,Cyclings, Futile,Cyclings, Futile Substrate,Cyclings, Substrate,Futile Cycle,Futile Cyclings,Futile Substrate Cycle,Futile Substrate Cyclings,Substrate Cycle, Futile,Substrate Cycles, Futile,Substrate Cycling, Futile,Substrate Cyclings,Substrate Cyclings, Futile

Related Publications

J B Russell, and G M Cook
January 1993, Gynecologic and obstetric investigation,
J B Russell, and G M Cook
January 2006, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova,
J B Russell, and G M Cook
June 2011, PM & R : the journal of injury, function, and rehabilitation,
J B Russell, and G M Cook
May 1998, Current opinion in clinical nutrition and metabolic care,
J B Russell, and G M Cook
May 1999, Current opinion in clinical nutrition and metabolic care,
J B Russell, and G M Cook
May 1987, The Journal of rheumatology,
J B Russell, and G M Cook
October 2005, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!