A study of acetazolamide-induced changes in cerebral blood flow using 99mTc HMPAO SPECT in patients with cerebrovascular disease. 1995

S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
Neurological Clinic, University of Vienna, Austria.

For semiquantification of SPECT studies we tried to calculate cerebral 99mTc-HMPAO uptake related to injected dose and estimated brain volume. The method was applied to SPECT investigations of 27 patients who had at least one ischaemic attack and a confirmed 80-100% stenosis of the corresponding internal carotid artery (ICA). Vascular reactivity was tested by parenteral administration of acetazolamide (AZ). Increase in HMPAO uptake after AZ was evident in both hemispheres, although the increase (AZ effect) was significantly lower in the affected hemisphere (+24% versus +28%). No interhemispheric uptake differences were seen in patients with largely normal SPECT studies, although local asymmetries in HMPAO deposition were visible. Patients with low density lesions on CT and with a well-demarcated lesion in the same location on SPECT revealed interhemispheric uptake differences, with lower uptake on the affected side. This was not due solely to alterations in the lesion, but also to reduced HMPAO uptake and AZ effect in the surrounding area. The AZ effect showed no correlation with angiographic findings, indicating no major haemodynamic influence of the ICA stenosis on cerebral hemisphere perfusion. Calculated cerebral HMPAO uptake changes after AZ administration were in good accordance with absolute cerebral blood flow measurements, and made interindividual comparisons possible. However, as changes in the area around an infarct or local reduction in vascular reserve may not be reproduced adequately by uptake calculations, visual inspection is still necessary.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010091 Oximes Compounds that contain the radical R2C Aldoximes,Hydroxyimino Compounds,Ketoxime,Ketoximes,Oxime,Compounds, Hydroxyimino
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002343 Carotid Artery, Internal Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose. Arteries, Internal Carotid,Artery, Internal Carotid,Carotid Arteries, Internal,Internal Carotid Arteries,Internal Carotid Artery
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks

Related Publications

S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
April 2005, Journal of neuroimaging : official journal of the American Society of Neuroimaging,
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
October 1997, Schizophrenia research,
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
December 1992, Stroke,
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
January 1997, Journal of neural transmission (Vienna, Austria : 1996),
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
April 2008, European archives of psychiatry and clinical neuroscience,
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
December 2006, The journals of gerontology. Series A, Biological sciences and medical sciences,
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
February 1991, Nuklearmedizin. Nuclear medicine,
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
January 1998, Nuclear medicine review. Central & Eastern Europe,
S Asenbaum, and A Reinprecht, and T Brücke, and S Wenger, and I Podreka, and L Deecke
May 1991, Kaku igaku. The Japanese journal of nuclear medicine,
Copied contents to your clipboard!