Different calcium channels mediate transmitter release evoked by transient or sustained depolarization at mammalian sympathetic ganglia. 1995

G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Argentina.

We have compared the effect of calcium channel blockers on the potassium-evoked release of tritium-labeled acetylcholine and on preganglionic spike-evoked synaptic transmission in the rat superior cervical ganglion. Transmitter release at the nerve terminals is mediated by the influx of calcium through voltage-gated calcium channels. While four types of voltage-gated calcium channels (T, L, N and P) have been identified in neurons, it is not clear which may actually be involved in excitation-secretion coupling. Release of tritiated acetylcholine evoked by sustained depolarization in high (40 mM) extracellular potassium decreased markedly in the absence of calcium or the presence of cadmium. High potassium-evoked release was substantially inhibited by the P-type channel blockers, purified from funnel-web spider toxin, and omega-agatoxin-IVA, and by the N-type channel blocker omega-conotoxin-GVIA, but was unaffected by the L-type channel blocker nitrendipine. In contrast, postganglionic compound action potentials synaptically triggered by preganglionic stimulation were strongly blocked by funnel-web spider toxin and slightly blocked by a high concentration of omega-agatoxin-IVA, but were unaffected by either omega-conotoxin-GVIA, nitrendipine or a low concentration of omega-agatoxin-IVA. Thus, at the superior cervical ganglion, funnel-web spider toxin-sensitive calcium channels play a dominant role in transmitter release evoked by transient, spike-mediated depolarization, but other types of voltage-gated calcium channels in addition to the funnel-web spider toxin-sensitive channel mediate the transmitter release that is evoked by sustained high potassium depolarization.

UI MeSH Term Description Entries
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D013095 Spermidine A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
June 1981, Nature,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
August 2005, Basic & clinical pharmacology & toxicology,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
February 1997, Biophysical journal,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
August 1989, British journal of pharmacology,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
January 1986, Journal de physiologie,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
March 2006, Cerebral cortex (New York, N.Y. : 1991),
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
June 1979, Brain research,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
January 2004, Visual neuroscience,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
May 1996, Brain research,
G R Gonzalez Burgos, and F I Biali, and B D Cherksey, and M Sugimori, and R R Llinás, and O D Uchitel
January 2008, Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections,
Copied contents to your clipboard!