Structure of RecA-DNA complex and mechanism of DNA strand exchange reaction in homologous recombination. 1994

M Takahashi, and B Nordén
Groupe d'Etude Mutagénèse et Cancérogénèse, URA 1342 CNRS, Institut Curie, Université Paris Sud, Orsay, France.

The importance of filament formation of RecA for the DNA strand exchange reaction, both in vivo and in vitro, is established. RecA forms a very long and relatively stiff filament by binding around DNA with high cooperativity. The monomer units are assembled in the filament in a head-to-tail arrangement in a helical manner, similar to the organization of RecA molecules found in the crystal of pure RecA or including ADP. This filament of RecA, containing a DNA molecule in its interior, can bind another DNA molecule and yet a third one in the presence of cofactor (ATP or its analogs). Each filament may have three DNA binding sites, each able to bind one DNA strand of either ss or ds DNA. According to linear dichroism and fluorescence spectroscopies, the DNA molecules in the RecA filament are well organized with a well defined but modified structure. This organization and modification of DNA by RecA probably has the purpose of facilitating Watson-Crick base-pair recognition and strand exchange reaction. RecA is thus actively involved in the reaction. The phosphoribose backbone of DNA follows the RecA helix and the DNA is stretched 50% and unwound. The nucleobases are destacked but still firmly oriented almost perpendicular to the axis for the first DNA and are immobile even in the case of ssDNA. Even in the second DNA the motion of DNA bases is very restricted although their orientation appears to be less perpendicular. All DNA strands in the complex show some sequence dependent interaction with each other. It could be a non-conventional base-base pairing, that could provide a mechanism of search for homologous DNA. In order to understand how RecA organizes DNA, a 3-D model building of the RecA-DNA complex is in progress undertaken based on the crystal structure of RecA and results obtained using chemical interference and protein engineering techniques. A characterization of structure of the second DNA and the mode of DNA-DNA interaction may further clarify the reaction mechanism of strand exchange.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M Takahashi, and B Nordén
May 2008, Molecular cell,
M Takahashi, and B Nordén
December 2010, DNA repair,
M Takahashi, and B Nordén
June 2006, BioTechniques,
M Takahashi, and B Nordén
January 2002, Nucleic acids research. Supplement (2001),
M Takahashi, and B Nordén
April 1981, Proceedings of the National Academy of Sciences of the United States of America,
M Takahashi, and B Nordén
January 1982, Annual review of genetics,
M Takahashi, and B Nordén
May 1983, The Journal of biological chemistry,
Copied contents to your clipboard!