Effect of nerve growth factor and GM1 ganglioside on the recovery of cholinergic neurons after a lesion of the nucleus basalis in aging rats. 1994

F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
Department of Preclinical and Clinical Pharmacology, University of Florence, Italy.

A unilateral ibotenic acid lesion was placed in the nucleus basalis magnocellularis of 3- and 18-month-old rats. In the lesioned aging rats, the number of choline acetyltransferase-immunoreactive neurons of the nucleus basalis magnocellularis was markedly reduced in the ipsilateral side and to a lesser extent in the contralateral side. Twenty-one days after the lesion, the activity of choline acetyltransferase in the ipsilateral cortex was reduced by 40% in both groups of rats and by 24% in the contralateral frontal cortex of the aging rats. Intracerebroventricular administration of nerve growth factor (10 micrograms twice a week) to aging lesioned rats for 3 weeks after surgery resulted in a complete recovery in the number of choline acetyltransferase-immunoreactive neurons in the nucleus basalis of both sides, and choline acetyltransferase activity in the contralateral cortex, with little effect on the ipsilateral cortex. No potentiation was seen after the concurrent administration of GM1 ganglioside and nerve growth factor. Complete recovery in cortical choline acetyltransferase activity was only observed in the lesioned rats treated with nerve growth factor for 1 week before and 3 weeks after lesioning. Nerve growth factor treatment, both after the lesion, and before and after the lesion, improved the passive avoidance performance disrupted by the lesion. In young lesioned rats daily intraperitoneal administration of GM1 (30 mg/kg) for 21 days after surgery promoted both the recovery of choline acetyltransferase activity and passive avoidance performance. In aging rats GM1, even at a dose twice as large, failed to reverse the biochemical and morphological deficits and behavioral impairment induced by the lesion. Only when GM1 administration was started 3 days before the lesion, were a complete recovery in choline acetyltransferase activity in the contralateral cortex and a partial recovery in the ipsilateral cortex obtained. Our results indicate that nerve growth factor and, to some extent, GM1 facilitate the recovery of the cholinergic neurons after a lesion of the nucleus basalis in aging rats, but their efficacy is reduced. The lower efficacy of GM1 as compared to NGF might be due to the different routes of administration used.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D008297 Male Males
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013377 Substantia Innominata Tissue in the BASAL FOREBRAIN inferior to the anterior perforated substance, and anterior to the GLOBUS PALLIDUS and ansa lenticularis. It contains the BASAL NUCLEUS OF MEYNERT. Innominata, Substantia
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
August 1989, Neuroscience letters,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
January 1990, Acta neurobiologiae experimentalis,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
April 1987, Neuroscience letters,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
May 1989, Brain research,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
July 1988, Neuroscience letters,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
March 1993, Neuroscience,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
January 1984, Journal of neuroscience research,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
January 1989, Neurobiology of aging,
F Casamenti, and C Scali, and L Giovannelli, and M S Faussone-Pellegrini, and G Pepeu
November 1984, Acta physiologica Scandinavica,
Copied contents to your clipboard!