Pharmacological characterization of bradykinin receptors in canine cultured tracheal smooth muscle cells. 1995

C M Yang, and S F Luo, and H C Hsia
Department of Pharmacology, Chang Gung College of Medicine and Technology, Tao-Yuan, Taiwan.

1. [3H]-bradykinin was used to characterize the bradykinin receptors associated with canine cultured tracheal smooth muscle cells (TSMCs). Receptor binding assay showed that TSMCs had specific, saturable, high-affinity binding sites for [3H]-bradykinin. 2. The specific [3H]-bradykinin binding increased linearly with increasing cell concentrations. The equilibrium for association of [3H]-bradykinin with the bradykinin receptors was attained within 2 h at 4 degrees C and 1 h at room temperature, respectively. 3. Analysis of binding isotherms yielded an apparent equilibrium dissociation constant (KD) of 2.5 +/- 0.3 nM and a maximum receptor density (Bmax) of 25.1 +/- 0.3 fmol mg-1 protein. The Hill coefficient for [3H]-bradykinin binding was 1.00 +/- 0.02. The association (K1) and dissociation (K-1) rate constants were (8.67 +/- 2.60) x 10(6) M-1 min-1 and 0.024 +/- 0.005 min-1, respectively. KD, calculated from the ratio of K-1 and K1 was 2.8 +/- 0.5 nM, a value close to that of KD calculated from Scatchard plots of binding isotherms. 4. The B1 receptor selective agonist, (des-Arg9-bradykinin, 0.1 nM-10 microM) and antagonist ([Leu8, des-Arg9]-bradykinin, 0.1 nM-10 microM) did not did not inhibit the [3H]-bradykinin binding to TSMCs, which excludes the presence of B1 receptors in canine TSMCs. 5. The specific binding of [3H]-bradykinin to canine TSMCs was inhibited by B2 receptor selective antagonists ([D-Arg0, Hyp3, Thi5, D-Tic7, Oicl-bradykinin, Hoe 140, 0.1 nM-10 micro M and [D-Arg0, Hyp3,Thi5,8, D-Phe7-bradykinin, 0.1 nM-10 micro M) and agonists (bradykinin and kallidin, 0.1 nM-10 micro M) with a best fit by a one-binding site model. The order of potency for the inhibition of [3H]-bradykinin binding was kallidin = bradykinin = Hoe 140> [D-Arg0, Hyp3, Thi5,8, D-Phel-bradykinin.6. Preincubation of TSMCs with forskolin for 24 h led to an up-regulation of B2 receptors, increasing in Bmax from 25.1 +/- 0.3 to 218 +/- 24 fmol mg-1 protein without changing the KD values. [3H]-bradykinin binding to TSMCs was inhibited by the B2 receptor selective antagonists and agonists, but not by the B1 receptor selective reagents. The up-regulation of the B2 receptor by forskolin was mediated through protein synthesis, since cycloheximide blocked this response.7 It is concluded that the pharmacological characteristics of the bradykinin receptors in canine cultured TSMCs are primarily of the B2 receptor subtype.

UI MeSH Term Description Entries
D007609 Kallidin A decapeptide bradykinin homolog cleaved from kininogen by kallikreins. It is a smooth-muscle stimulant and hypotensive agent that acts by vasodilatation. Lysyl Bradykinin,Kallidin Tetraacetate,Kallidin, (D)-Isomer,Lys-Bradykinin,Lysine Bradykinin,N2-L-Lysylbradykinin,Bradykinin, Lysine,Bradykinin, Lysyl,Lys Bradykinin,N2 L Lysylbradykinin,Tetraacetate, Kallidin
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

C M Yang, and S F Luo, and H C Hsia
November 1993, British journal of pharmacology,
C M Yang, and S F Luo, and H C Hsia
October 1992, British journal of pharmacology,
C M Yang, and S F Luo, and H C Hsia
January 1995, Acta cientifica venezolana,
C M Yang, and S F Luo, and H C Hsia
February 1991, Journal of autonomic pharmacology,
C M Yang, and S F Luo, and H C Hsia
August 2001, British journal of pharmacology,
C M Yang, and S F Luo, and H C Hsia
March 1994, British journal of pharmacology,
Copied contents to your clipboard!