The effects of various drugs on the myocardial inotropic response. 1995

M Endoh
Department of Pharmacology, Yamagata University School of Medicine, Japan.

1. The signal transduction process mediated by cyclic AMP that leads to the characteristic positive inotropic effect (PIE) in association with a positive lusitropic effect (acceleration of rate of twitch relaxation) has been well established. Relationships between accumulation of cyclic AMP, changes in intracellular Ca2+ transients and the PIE differ, however, depending on the mechanism of particular drugs that affect different steps in the metabolism of cyclic AMP. Selective partial agonists of beta 1-adrenoceptors and inhibitors of phosphodiesterase (PDE) III cause the accumulation of less cyclic AMP for a given PIE than does isoproterenol. In addition, in aequorin-microinjected canine ventricular muscle, selective inhibitors of PDE III, OPC 18790 and Org 9731, produced smaller decreases in the responsiveness of myofilaments to Ca2+ ions than isoproterenol, while a partial agonist of beta 1-adrenoceptors, denopamine, elicits a decrease in Ca2+ responsiveness of the same extent as does isoproterenol. 2. Activation of myocardial alpha 1-adrenoceptors, as well as stimulation of receptors for endothelin and angiotensin II, which accelerates hydrolysis of phosphoinositide (PI) to result in production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) are associated with very similar inotropic regulation: (1) the dependence on the species of animals of induction of the PIE; (2) an excellent correlation between the extent of acceleration of hydrolysis of PI and the PIE; (3) isometric contraction curves associated with a negative lusitropic effect; (4) the PIE associated with increases in myofibrillar responsiveness to Ca2+ ions; and (5) the selective inhibition of the PIE by an activator of protein kinase C (PKC), phorbol 12,13-dibutyrate (PDBu), with little effect on the PIE of isoproterenol and Bay k 8644. 3. A novel class of cardiotonic agents, namely, Ca2+ sensitizers such as EMD 53998 and Org 30029, act on the Ca(2+)-binding site of troponin C, increasing the affinity of these sites for Ca2+ ions, or at the actin-myosin interface to facilitate the cycling of cross-bridges. These agents produce a PIE with little change or decrease in Ca2+ transients and may bring about a significant breakthrough in the development of drugs for reversal of myocardial failure in the treatment of congestive heart failure.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016232 Endothelins 21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides. Endothelium-Derived Vasoconstrictor Factors,Endothelin,Vasoconstrictor Factors, Endothelium-Derived

Related Publications

M Endoh
January 1978, Nagoya journal of medical science,
M Endoh
October 1991, The Annals of thoracic surgery,
M Endoh
April 1948, The Journal of pharmacology and experimental therapeutics,
M Endoh
April 1981, The British journal of disorders of communication,
M Endoh
January 1980, Intensive care medicine,
M Endoh
January 1976, Acta medica Scandinavica. Supplementum,
M Endoh
March 1994, The American journal of physiology,
M Endoh
December 1989, The American journal of physiology,
Copied contents to your clipboard!