An improved method for purifying human thymic dendritic cells. 1995

S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
Département de Microbiologie et Immunologie, Succursale A, Faculté de Médecine, Université de Montréal, Quebec, Canada.

Thymic dendritic cells (DC) play a prominent role in the immune response as they constitute a key element involved in the maturation of thymocytes in the thymus. Human thymic DC, like DC from other lymphoid organs, represent a minor cell population (< 2%) of the thymus. Since these cells cannot replicate in vitro, the development of efficient purification methods is an essential prerequisite for extensive functional studies. DC express high levels of HLA-DR, a cell surface marker of the MHC class II antigen which is not exclusive to DC. Since no specific human thymic DC marker has been identified so far, DC purification methods are mainly based on depletion of particular subgroups of cells. We report here an improved method for purifying human thymic dendritic cells. In contrast to prior work, CD2+ thymocytes were first depleted by rosetting with neuraminidase treated sheep red blood cells. The nonrosetted cells were separated in a Percoll gradient, and the low-density cells were subsequently depleted of nondendritic cells by using thymocyte and macrophage specific monoclonal antibodies and either magnetic bead depletion or cytofluorometry. Cell populations (18-55 x 10(6) cells) obtained following magnetic bead purification were at least 80% HLA-DR+/CD2- and exhibited ultrastructural morphological features and functional activities such as those described previously for thymic DC. This improved method was compared with different purification approaches that use various combinations of cell density-based separation techniques and cell surface specific markers antibody reactivity. The magnetic beads depletion approach provided higher yields.

UI MeSH Term Description Entries
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006683 HLA-DQ Antigens A group of the D-related HLA antigens found to differ from the DR antigens in genetic locus and therefore inheritance. These antigens are polymorphic glycoproteins comprising alpha and beta chains and are found on lymphoid and other cells, often associated with certain diseases. HLA-DC Antigens,HLA-MB Antigens,HLA-DC,HLA-DQ,HLA-DS,HLA-DS Antigens,HLA-LB,HLA-LB Antigens,HLA-MB,Antigens, HLA-DC,Antigens, HLA-DQ,Antigens, HLA-DS,Antigens, HLA-LB,Antigens, HLA-MB,HLA DC Antigens,HLA DQ Antigens,HLA DS Antigens,HLA LB Antigens,HLA MB Antigens
D006684 HLA-DR Antigens A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS. HLA-DR,Antigens, HLA-DR,HLA DR Antigens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
October 1975, The Biochemical journal,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
April 2019, Journal of immunological methods,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
July 2001, Pathologie-biologie,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
August 1997, Microscopy research and technique,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
January 1984, The Journal of biological chemistry,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
September 1990, Biology of reproduction,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
June 1996, Journal of immunological methods,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
June 2009, American journal of human genetics,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
July 1997, Immunology today,
S Beaulieu, and D Landry, and D Bergeron, and E A Cohen, and S Montplaisir
May 1968, Archives of environmental health,
Copied contents to your clipboard!