Postnatal development of pre- and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat. 1995

J L Gaiarsa, and V Tseeb, and Y Ben-Ari
Institut National de la Santé et de la Recherche Médicale U29, Hopital de Port-Royal, Paris, France.

1. Intracellular recordings were made from adult and neonatal rat hippocampal slices to study the postnatal development of GABAB-mediated inhibition in CA3 pyramidal neurons. 2. In the presence of glutamatergic receptor antagonists, direct electrical stimulation of the interneurons induced a biphasic GABAA- and GABAB-mediated inhibitory postsynaptic potential in adult [postnatal day (P) 30-P40] and young (P6-P8) CA3 pyramidal neurons. In contrast, in pups (P0-P3), electrical stimulation only induced a bicuculline-sensitive depolarizing GABAA synaptic potential. 3. The outward postsynaptic currents generated by bath-applications of baclofen (30 microM, 30 s) at P3 (78 +/- 60 pA, mean +/- SE) were 4 to 5 times smaller than those evoked between P6 (329 +/- 32 pA) and P30 (412 +/- 44 pA). At P0, baclofen failed to induce a postsynaptic current. 4. The outward currents generated by serotonin (50 microM, 30 s) and the A1 receptor agonist N-cyclopentyladenosine (40 microM, 30 s) ranged between 0 and 50 pA at P3 and between 200 and 400 pA at P6 and P30 (holding potential = -60 +/- 2 mV). 5. In the presence of potassium channel blockers, the amplitude of calcium current elicited by a depolarizing voltage step command (1 s) from a holding potential of -60 mV to a test potential of 0 mV was 2 +/- 0.15 nA at P6 (n = 9) and 0.73 +/- 0.14 nA at P3 (n = 8). Baclofen reversibly reduced the amplitude of calcium currents in young rats but not in pups. 6. Baclofen reversibly reduced the amplitude of the evoked GABAA-mediated and glutamatergic synaptic events at all developmental stages. These effects were dose dependent and antagonized by P-alpha 3-aminopropyl-P-diethoxymethyl-phosphinic acid (CGP) 35348 (500 microM). 7. We conclude that postsynaptic GABAB-mediated inhibition is absent or minimal during the first postnatal days in the CA3 region. In contrast, presynaptic GABAB inhibition is present at birth. We discuss the mechanisms and physiological consequences of these observations.

UI MeSH Term Description Entries
D008297 Male Males
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D015509 Developmental Biology The field of BIOLOGY which deals with the process of the GROWTH AND DEVELOPMENT of an organism. Auxology,Biology, Developmental

Related Publications

J L Gaiarsa, and V Tseeb, and Y Ben-Ari
October 1996, Brain research,
J L Gaiarsa, and V Tseeb, and Y Ben-Ari
March 1998, Journal of neurophysiology,
J L Gaiarsa, and V Tseeb, and Y Ben-Ari
December 2019, The Journal of physiology,
J L Gaiarsa, and V Tseeb, and Y Ben-Ari
January 1990, Progress in brain research,
J L Gaiarsa, and V Tseeb, and Y Ben-Ari
July 1995, The European journal of neuroscience,
J L Gaiarsa, and V Tseeb, and Y Ben-Ari
January 1997, Brain research. Developmental brain research,
J L Gaiarsa, and V Tseeb, and Y Ben-Ari
November 1994, Journal of neurophysiology,
Copied contents to your clipboard!