Effect of hypoxia on force, intracellular pH and Ca2+ concentration in rat cerebral and mesenteric small arteries. 1995

C Aalkjaer, and J H Lombard
Department of Pharmacology, University of Aarhus, Denmark.

1. The effect of severe hypoxia on force, intracellular Ca2+ concentration ([Ca2+]i) and pHi was studied in isolated small arteries from rat brain and rat mesenterium. The arteries were mounted for isometric force recording while [Ca2+]i was measured with fura-2 or pHi was measured with bis-carboxyethylcarboxyfluorescein (BCECF). 2. Hypoxia reduced the force development in response to arginine vasopressin (AVP) while [Ca2+]i was unchanged or only slightly reduced. Inhibition of acid extrusion by omission of sodium caused no force development in mesenteric arteries, but the fall in pHi was enhanced during hypoxia. In cerebral arteries, hypoxia reduced the force development associated with omission of sodium, and the fall in pHi was less than during normoxic conditions. When acid extrusion was intact, pHi was not affected by hypoxia and the changes in pHi during activation with AVP were similar during hypoxia and in the control situation. 3. Although a decrease in smooth muscle [Ca2+]i may be partly responsible for the reduced force development during hypoxia, [Ca2+]i-independent mechanism(s) may play an even more important role. Furthermore, although hypoxia and force development are associated with enhanced acid production, acid extrusion maintains pHi near the control level and it is unlikely that a decrease in smooth muscle pHi plays any role in the reduced force development during hypoxia.

UI MeSH Term Description Entries
D008297 Male Males
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin

Related Publications

C Aalkjaer, and J H Lombard
January 1994, Pharmacology & therapeutics,
C Aalkjaer, and J H Lombard
June 2005, Vascular pharmacology,
C Aalkjaer, and J H Lombard
April 2004, Canadian journal of physiology and pharmacology,
C Aalkjaer, and J H Lombard
January 1990, Respiration physiology,
C Aalkjaer, and J H Lombard
October 2000, The Journal of physiology,
Copied contents to your clipboard!