Guest: a 98 bp inverted repeat transposable element in Neurospora crassa. 1995

P J Yeadon, and D E Catcheside
School of Biological Sciences, Flinders University, Adelaide, Australia.

The region immediately 3' of histidine-3 has been cloned and sequenced from two laboratory strains of the ascomycete fungus Neurospora crassa; St Lawrence 74A and Lindegren, which have different derivations from wild collections. Amongst the differences distinguishing these sequences are insertions ranging in size from 20 to 101 bp present only in St Lawrence. The largest of these is flanked by a 3 bp direct repeat, has terminal inverted repeats (TIR) and shares features with several known transposable elements. At 98 bp, it may be the smallest transposable element yet found in eukaryotes. There are multiple copies of the TIR in the Neurospora genome, similar but not identical to the one sequenced. PCR amplification of Neurospora genomic DNA, using 26 bp of the TIR as a single primer, gave products of discrete sizes ranging from 100 bp to about 1.3 kb, suggesting that the element isolated (Guest) may be a deletion derivative of a family of larger transposable elements. Guest appears to be the first transposable element reported in fungi that is not a retrotransposon.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot

Related Publications

P J Yeadon, and D E Catcheside
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
P J Yeadon, and D E Catcheside
January 2008, Biochemical and biophysical research communications,
P J Yeadon, and D E Catcheside
August 1995, Molecular & general genetics : MGG,
P J Yeadon, and D E Catcheside
May 2019, The Plant journal : for cell and molecular biology,
P J Yeadon, and D E Catcheside
April 1995, Journal of molecular biology,
P J Yeadon, and D E Catcheside
June 2007, Proceedings of the National Academy of Sciences of the United States of America,
P J Yeadon, and D E Catcheside
February 1980, The Journal of biological chemistry,
Copied contents to your clipboard!