Interaction of the isolated transmembrane domain of diphtheria toxin with membranes. 1995

H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Insertion of diphtheria toxin's T (transmembrane) domain into the endosomal membrane under acidic conditions is known to promote translocation of its catalytic domain across the membrane and into the cytosol. The T domain, a cysteine-free bundle of alpha-helices, was expressed as a discrete protein in Escherichia coli and purified. The isolated domain was stable and largely monomeric at pH 8.0. Like the holotoxin it bound the hydrophobic fluorophore, 2-p-toluidinylnaphthalene 6-sulfonate, upon acidification, but the transition pH was higher than with the holotoxin (pH 5.6 vs 5.1) and broader, reflecting the absence of interdomain interactions. The domain also permeabilized large unilamellar vesicles under acidic conditions, as demonstrated by release of entrapped solutes. Mutant forms of T domain, each with a single residue replaced by cysteine, were derivatized with a thiol-reactive nitroxide-containing spin label and analyzed by electron paramagnetic resonance (EPR). EPR spectra and solvent accessibilities of the labels at pH 8.0 were consistent with the environments predicted from the toxin's crystallographic structure. Acidification in the presence of large unilamellar vesicles caused a nitroxide label at position 332 on helix TH8 to move from a buried site in the water soluble state to a lipid-exposed surface site at a depth of approximately 15 A within the bilayer. This is consistent with the concept that the TH8-TH9 helix pair inserts into the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004167 Diphtheria Toxin An ADP-ribosylating polypeptide produced by CORYNEBACTERIUM DIPHTHERIAE that causes the signs and symptoms of DIPHTHERIA. It can be broken into two unequal domains: the smaller, catalytic A domain is the lethal moiety and contains MONO(ADP-RIBOSE) TRANSFERASES which transfers ADP RIBOSE to PEPTIDE ELONGATION FACTOR 2 thereby inhibiting protein synthesis; and the larger B domain that is needed for entry into cells. Corynebacterium Diphtheriae Toxin,Toxin, Corynebacterium Diphtheriae
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide

Related Publications

H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
February 1988, Biochemistry,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
September 1976, The Journal of biological chemistry,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
January 1977, Progress in clinical and biological research,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
November 1982, Biochemical and biophysical research communications,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
January 1997, The Biochemical journal,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
August 1977, Biokhimiia (Moscow, Russia),
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
January 1995, Biochemistry,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
September 1994, The Journal of biological chemistry,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
March 2004, Biochimica et biophysica acta,
H Zhan, and K J Oh, and Y K Shin, and W L Hubbell, and R J Collier
June 2004, Biochemistry,
Copied contents to your clipboard!