Na/K competitive transport selectivity of (221)C10-cryptand: effects of pH and carrier concentration. 1995

A Loiseau, and M Hill, and G Mulliert, and M Castaing
U-251 INSERM, Faculté de Médecine Xavier-Bichat, Paris, France.

The kinetics of the competitive transport of Na+ and K+ ions across the membrane of large unilamellar vesicles (LUV) were determined when transport was induced by (221)C10-cryptand, an ionizable mobile carrier. The experiments were performed at various pH values (7.7 and 8.7) and carrier concentrations (0.1, 0.5 and 1.0 microM) in order to quantify the effects of these parameters on the Na/K competitive transport selectivity of this mobile carrier. At any given pH and carrier concentration, the apparent affinity of (221)C10 for Na+ was higher and less dependent on the concentration of the other competing ion than that for K+. The Na/K competitive transport selectivity (SC(Na/K)) of (221)C10 increased linearly with the Na+ concentrations, decreased hyperbolically with increasing those of K+ and was independent of the pH and of the carrier concentration. In equimolecular ionic mixtures, this competitive selectivity amounted to about 1.5 and when the pH rose, the carrier selectivity for Na+ over K+ ions was enhanced by cation competition compared to transport of cations as unique substrates. Equations were established to describe the variations of the competitive transport selectivity (SC) of cryptands, and for comparison of their noncompetitive selectivity (SNC), with the ionic concentrations, the Michaelis parameters of the cations and the pH. The reaction order in Na+ (n(Na)) increased significantly with decreasing the pH and the K+ concentration. The results are discussed in terms of the structural, physico-chemical and electrical characteristics of carriers and complexes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001643 Bridged Bicyclo Compounds Saturated alicyclic hydrocarbon molecules consisting of two rings that have two non-adjacent atoms in common. Bicyclo Compounds,Bicyclo Compounds, Bridged
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A Loiseau, and M Hill, and G Mulliert, and M Castaing
January 1987, The Journal of membrane biology,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
November 1991, Biophysical chemistry,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
January 1986, The Journal of membrane biology,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
October 1983, Proceedings of the National Academy of Sciences of the United States of America,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
February 2018, The Journal of biological chemistry,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
December 1990, Alcoholism, clinical and experimental research,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
March 1993, The Journal of membrane biology,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
July 1980, Immunobiology,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
May 2018, FEBS open bio,
A Loiseau, and M Hill, and G Mulliert, and M Castaing
January 2020, Chemical communications (Cambridge, England),
Copied contents to your clipboard!