Involvement of bidirectional adenosine transporters in the release of L-[3H]adenosine from rat brain synaptosomal preparations. 1995

J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
Department of Pharmacology and Therapeutics, University of Manitoba, Faculty of Medicine, Winnipeg, Canada.

Adenosine transport inhibitors as enhancers of extracellular levels of endogenous adenosine would, presumably, only be effective if, for example, (1) the inhibitors block influx to a greater degree than efflux (release) of intracellular adenosine or (2) the inhibitors block equally well the influx and efflux of adenosine, but significant amounts of adenosine are formed as a result of dephosphorylation of released adenine nucleotides. Limited information is available regarding the directional symmetry of adenosine transporters in neural cells. Using rat brain crude P2 synaptosomal preparations preloaded with L-[3H]adenosine, our objectives here were to determine (1) if L-[3H]adenosine, a substrate for adenosine transporters that is more metabolically stable than physiological D-adenosine, was being released from synaptosomal preparations, (2) the optimal conditions necessary to observe the release, and (3) the degree to which this release was mediated by efflux through bidirectional nucleoside transporters. L-[3H]Adenosine release was found to be concentration and time dependent, temperature sensitive, and linear with synaptosomal protein. L-[3H]Adenosine release was inhibited dose-dependently by dipyridamole, nitrobenzylthioinosine, and dilazep; at concentrations of 100 microM inhibition was at least 40% for dipyridamole, 52% for nitrobenzylthioinosine, and 49% for dilazep. After loading with L-[3H]adenosine alone or I-[3H]adenosine plus unlabeled L-adenosine, D-adenosine, or uridine, L-[3H]adenosine release was inhibited 42% by L-adenosine, 69% by uridine, and 81% by D-adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004109 Dilazep Coronary vasodilator with some antiarrhythmic activity. Asta C 4898,Biopropazepan Trimethoxybenzoate,Cormelian,C 4898, Asta,Trimethoxybenzoate, Biopropazepan
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
February 1981, The Biochemical journal,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
August 1977, Biochemical pharmacology,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
January 1991, Neuroscience letters,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
September 2003, Brain research,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
February 1976, Brain research,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
June 2002, Neuropharmacology,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
September 1994, Neurochemistry international,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
November 1987, European journal of pharmacology,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
January 1982, General pharmacology,
J G Gu, and I O Foga, and F E Parkinson, and J D Geiger
August 1980, European journal of pharmacology,
Copied contents to your clipboard!