Distribution of molecules mediating thymocyte-stroma-interactions in human thymus, thymitis and thymic epithelial tumors. 1994

A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
Institutes of Pathology, University of Würzburg, Germany.

Two findings in thymic epithelial tumors are correlated with the occurrence of myasthenia gravis(MG): (1) the expression of an acetylcholine receptor (AChR)-like-epitope in the neoplastic epithelium, and (2) the preservation of thymus-like features in the neoplasms, indicated by the presence of immature thymocytes. On this background it has been proposed that paraneoplastic MG may start with an intratumorous abnormal T cell selection due to aberrantly expressed AChR-epitopes (self-peptides). As appropriate thymocyte-stroma-interactions are prerequisites for thymocyte development in the thymus (and probably in MG-associated thymic tumors, too), we analyzed the expression of CD28/B7(BB1), CD2/:LFA3, LFA-1/ICAM-1 and VLA-4/VCAM-1 in human thymus and thymomas by immunohistochemistry. In normal thymuses and thymitis the stromal molecules were expressed at higher levels in the medulla than in the cortex. This was particularly true for B7(BB1) that was undetectable by immunoperoxidase techniques in the cortex. In contrast, cortical-type thymic epithelial tumors (cortical thymoma and well differentiated thymic carcinoma), known to exhibit the highest association with myasthenia, expressed the stromal molecules at almost medullary levels. The findings may be a clue to a functional difference between neoplastic and normal cortical epithelial cells: while we find the former to have the capacity to present soluble antigen to antigen-specific CD4+ T cells in vitro, normal cortical epithelium failed to do so. This altered microenvironment in thymomas might contribute to the autoimmunization by stimulating mature recirculating AChR-specific T cells.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008206 Lymphatic Diseases Diseases of LYMPH; LYMPH NODES; or LYMPHATIC VESSELS. Lymphatism,Status Lymphaticus,Disease, Lymphatic,Diseases, Lymphatic,Lymphatic Disease
D009157 Myasthenia Gravis A disorder of neuromuscular transmission characterized by fatigable weakness of cranial and skeletal muscles with elevated titers of ACETYLCHOLINE RECEPTORS or muscle-specific receptor tyrosine kinase (MuSK) autoantibodies. Clinical manifestations may include ocular muscle weakness (fluctuating, asymmetric, external ophthalmoplegia; diplopia; ptosis; and weakness of eye closure) and extraocular fatigable weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles (ocular myasthenia). THYMOMA is commonly associated with this condition. Anti-MuSK Myasthenia Gravis,MuSK MG,MuSK Myasthenia Gravis,Muscle-Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Generalized,Myasthenia Gravis, Ocular,Anti MuSK Myasthenia Gravis,Generalized Myasthenia Gravis,Muscle Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Anti-MuSK,Myasthenia Gravis, MuSK,Ocular Myasthenia Gravis
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013945 Thymoma A neoplasm originating from thymic tissue, usually benign, and frequently encapsulated. Although it is occasionally invasive, metastases are extremely rare. It consists of any type of thymic epithelial cell as well as lymphocytes that are usually abundant. Malignant lymphomas that involve the thymus, e.g., lymphosarcoma, Hodgkin's disease (previously termed granulomatous thymoma), should not be regarded as thymoma. (From Stedman, 25th ed) Carcinoma, Thymic,Carcinomas, Thymic,Thymic Carcinoma,Thymic Carcinomas,Thymomas

Related Publications

A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
October 1987, Human immunology,
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
January 2015, Frontiers in immunology,
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
January 1996, Proceedings of the National Science Council, Republic of China. Part B, Life sciences,
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
January 2008, Cellular immunology,
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
January 1993, Cancer,
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
April 1990, Journal of immunology (Baltimore, Md. : 1950),
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
September 1988, Clinical immunology and immunopathology,
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
June 1991, The Journal of experimental medicine,
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
January 2007, Methods in molecular biology (Clifton, N.J.),
A Marx, and D Schömig, and A Schultz, and S Gattenlöhner, and A Jung, and T Kirchner, and A Melms, and H K Müller-Hermelink
November 2013, Memorias do Instituto Oswaldo Cruz,
Copied contents to your clipboard!