Postnatal migration of neurons and formation of laminae in rat cerebral cortex. 1995

M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA.

Migration of neurons and formation of laminae in the developing neocortex were studied by means of thymidine autoradiography. Timed pregnant rats received a single pulse injection of [3H]thymidine in the morning of embryonic day (E)13, 14, 15, 16, 17, 18 or 19. Pups were killed on postnatal day (P)0, 1, 2, 3, 4, 6, 10, 30, or 60 and brains were processed for autoradiography. Neurons in posterior (visual) cortical areas labeled by [3H]thymidine administration on E13 or E14 were found predominantly in the cortical subplate; cells labeled on E15 in layer VI; cells labeled on E16 in layers VI and V, cells labeled on E17 in layers V and IV; E18 in layers IV and III; and E19 in layers III and II. By the day of birth (P0), neurons labeled from E13-16 injections were already in their mature laminae in cortex. Many of the cells labeled on E17 were still situated within the cell-dense cortical plate (CP) at P0, and within layer V by P1. Cells labeled on E18 were found in the most superficial part of the CP on P0, in the deep part of the CP on P1, and formed layer IV on P2 and P3. At P0, many E19 labeled cells appeared to be in migration to the cortex and were found in the CP on P1, in layer III by P4, and in layer II by P6. Cells in the auditory cortex labeled by [3H]thymidine injections on a particular day were situated more superficially than comparable labeled cells in the visual cortex, indicating a lateral to medial gradient in which the auditory cortex is formed earlier than the visual cortex. Distributions of labeled cells in the somatosensory cortex were similar to those in the visual cortex. These data provide a detailed and comprehensive description of the position of varied populations of cortical neurons during the early postnatal period, as well as a description of the formation of cortical laminae at times when major systems of afferents are growing into the cortex and making synaptic connections with their target cells.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005260 Female Females
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013936 Thymidine A nucleoside in which THYMINE is linked to DEOXYRIBOSE. 2'-Deoxythymidine,Deoxythymidine,2' Deoxythymidine
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
November 2003, Journal of cell science,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
December 1992, Molecular and chemical neuropathology,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
May 1968, The Journal of comparative neurology,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
July 1995, Development (Cambridge, England),
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
October 1959, Journal of anatomy,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
January 2020, Frontiers in cell and developmental biology,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
January 1991, Neuroscience,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
February 1982, Journal of neurocytology,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
January 1982, The Biochemical journal,
M P Ignacio, and E J Kimm, and G H Kageyama, and J Yu, and R T Robertson
January 1979, Acta anatomica,
Copied contents to your clipboard!