Steady-state kinetic mechanism of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase. 1995

A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
Enzymology Laboratory, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000, USA.

The Escherichia coli MurB gene encoding UDP-N-acetylenolpyruvylglucosamine reductase was expressed to a level of approximately 100 mg/L as a fusion construct with maltose binding protein. Rapid affinity purification, proteolysis, and anion exchange chromatography yielded homogeneous enzyme containing 1 mol/mol bound FAD. Enzyme was maximally activated by K+, NH4+, and Rb+ at cation concentrations between 10 and 50 mM. Steady-state enzyme kinetics at pH 8.0 and 37 degrees C revealed weak and strong substrate inhibition by NADPH and UDP-N-acetylenolpyruvylglucosamine, respectively, where the KiS were 910 microM and 73 microM. Substrate inhibition was pH dependent for both substrates. Initial velocity measurements as a function of both substrates produced patterns consistent with a ping pong bi bi double competitive substrate inhibition mechanism. Data at pH 8.0 yielded kinetic constants corresponding to Km,UNAGEP = 24 +/- 3 microM, Ki,UNAGEP = 73 +/- 19 microM, Km,NADPH = 17 +/- 3 microM, Ki,NADPH = 910 +/- 670 microM, and kcat = 62 +/- 3 s-1. A slow anaerobic exchange reaction with thio-NADP+ provided evidence for release of NADP+ in the absence of UNAGEP. Alternate reduced nicotinamide dinucleotides, including NHXDPH, 3'-NADPH, and alpha-NADPH, were substrates, whereas NADH was not. Several nucleotides, including ADP and UDP, were weak inhibitors of the enzyme with inhibition constants between 5 and 97 mM. Various analogs of NADP+, including 3'-NADP+, thio-NADP+, APADP+, NEthDP+, and NHXDP+, were inhibitors of the enzyme with respect to NADPH and yielded inhibition constants in the range of 110-1100 microM. Analogs without the 2'- or 3'-phosphate of NADPH or NADP+ were not substrates or inhibitors. Double inhibition experiments with varied APADP+ and UNAG produced inhibition patterns consistent with mutually exclusive inhibitor binding. The data suggest that NADPH and UNAGEP share a subsite that prevents both molecules from binding at once.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002237 Carbohydrate Dehydrogenases Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99. Carbohydrate Oxidoreductases,Dehydrogenases, Carbohydrate,Oxidoreductases, Carbohydrate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine

Related Publications

A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
January 1997, Biochemistry,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
March 1993, Biochemistry,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
May 1977, Archives of biochemistry and biophysics,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
February 1996, Biochemistry,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
May 2001, Biochemistry,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
February 2007, Proteins,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
July 1994, Protein science : a publication of the Protein Society,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
September 2003, Biochemistry,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
May 2003, Archives of biochemistry and biophysics,
A M Dhalla, and J Yanchunas, and H T Ho, and P J Falk, and J J Villafranca, and J G Robertson
July 1998, Biochemistry,
Copied contents to your clipboard!