Regulation of glutamine and glucose metabolism by cell volume in lymphocytes and macrophages. 1995

G Wu, and N E Flynn
Department of Animal Science, Texas A & M University, College Station 77843-2471, USA.

The effects of osmotically and sucrose-induced cell volume changes on glutamine and glucose metabolism were investigated in rat lymphocytes and macrophages incubated for 10-60 min at 37 degrees C in Krebs-Henseleit bicarbonate buffer (pH 7.4). Decreasing extracellular osmolarity from 336 to 286 mOsmol by decreasing medium NaCl from 119 to 94 mM increased cell volume and the rates of glutamine metabolism and glycolysis in both cell types. Conversely, increasing extracellular osmolarity from 286 to 386 mOsmol by the addition of 50 and 100 mM D-mannitol progressively decreased both cell volume and the rates of glutamine and glucose metabolism in lymphocytes and macrophages. At the same medium osmolarity of 336 mOsmol, the rates of glutamine metabolism and glycolysis were greater with the addition of 50 mM sucrose than with that of 25 mM NaCl. The sucrose-induced increase in cell volume, which is due to the uptake of sucrose by lymphocytes and macrophages via pinocytosis, is associated with enhanced rates of glutamine metabolism and glycolysis. Our findings suggest that cell volume change may be a hitherto unrecognized mechanism for regulating metabolism in lymphocytes and macrophages. The enhanced glutamine and glucose metabolism in these cells in response to mitogenic stimulation or immunological activation may result, at least in part, from the concomitant increase in cell volume.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008353 Mannitol A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. (L)-Mannitol,Osmitrol,Osmofundin
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Wu, and N E Flynn
January 1988, Metabolism: clinical and experimental,
G Wu, and N E Flynn
December 1992, Comparative biochemistry and physiology. B, Comparative biochemistry,
G Wu, and N E Flynn
June 1999, The Journal of nutritional biochemistry,
G Wu, and N E Flynn
March 1990, European journal of biochemistry,
G Wu, and N E Flynn
January 1988, Renal physiology and biochemistry,
G Wu, and N E Flynn
January 1991, The American journal of physiology,
G Wu, and N E Flynn
April 1988, Journal of cellular physiology,
G Wu, and N E Flynn
August 1989, Metabolism: clinical and experimental,
Copied contents to your clipboard!