Cloning of a pea cDNA encoding a polypeptide of the light-harvesting complex associated with photosystem I using a monoclonal antibody. 1995

M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
School of Biological Sciences, University of Birmingham, UK.

A monoclonal antibody (MAb UB42) is described that binds to thylakoids in pea chloroplasts, as shown by EM-immunogold labelling. The antibody recognised proteins of ca. 23-29 kDa in western blots of a pea leaf homogenate. A cDNA library was prepared from pea epidermal cells in the vector lambda ZAP II, and immunoscreening of the library with UB42 led to the isolation of a clone, pUB42. This was sequenced and had an open reading frame of 269 codons encoding a predicted polypeptide of 28.9 kDa. The sequence showed extensive homology with three closely related polypeptides belonging to a family of chlorophyll a/b-binding proteins from the light harvesting complex of photosystem I (LHCI). Collectively, the results suggest that MAb UB42 recognises an epitope on the type II chlorophyll a/b-binding protein from LHCI and that clone pUB42 encodes this protein.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D045322 Photosynthetic Reaction Center Complex Proteins Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II. Photosynthetic Complex,Photosynthetic Reaction Center,Photosynthetic Reaction Center Complex Protein,Photosynthetic Complexes,Photosynthetic Reaction Centers,Center, Photosynthetic Reaction,Complex, Photosynthetic,Complexes, Photosynthetic,Reaction Center, Photosynthetic,Reaction Centers, Photosynthetic
D045331 Photosystem I Protein Complex A large multisubunit protein complex that is found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to drive electron transfer reactions that result in either the reduction of NADP to NADPH or the transport of PROTONS across the membrane. Photosystem I Reaction Center,Photosystem I
D045342 Light-Harvesting Protein Complexes Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX. Antenna Complexes, Light-Harvesting,Light-Harvesting Antenna Complexes,Light-Harvesting Chlorophyll Protein,Light-Harvesting Chlorophyll Protein Complexes,Antenna Complexes, Light Harvesting,Chlorophyll Protein, Light-Harvesting,Complexes, Light-Harvesting Antenna,Complexes, Light-Harvesting Protein,Light Harvesting Antenna Complexes,Light Harvesting Chlorophyll Protein,Light Harvesting Chlorophyll Protein Complexes,Light Harvesting Protein Complexes,Protein Complexes, Light-Harvesting
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA

Related Publications

M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
March 1987, Plant molecular biology,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
December 1993, Plant physiology,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
January 1993, Current genetics,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
January 2002, Zeitschrift fur Naturforschung. C, Journal of biosciences,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
September 1988, FEBS letters,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
November 1989, Plant molecular biology,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
September 1995, Bioscience, biotechnology, and biochemistry,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
July 1992, Plant molecular biology,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
March 1984, Plant physiology,
M E Cannell, and A J Mitchell, and S McCready, and J A Callow, and J R Green
June 2019, Nature plants,
Copied contents to your clipboard!