How do fetal grafts of the suprachiasmatic nucleus communicate with the host brain? 1995

M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, OH 45267, USA.

Fetal grafts containing the hypothalamic suprachiasmatic nucleus (SCN), the site of an endogenous circadian pacemaker, can reinstate behavioral rhythms in lesioned recipients but the precise routes of communication between the graft and the host brain remain unknown. Grafts containing the SCN may convey temporal information to the host brain via neural efferents, diffusible factors, or a combination of both. We examined graft-host connections in anterior hypothalamic homografts (hamster-to hamster) and heterografts (rat-to hamster) implanted in the third ventricle by: (a) applying the carbocyanine dye, diI, directly onto homo- and heterografts in fixed tissue sections; and (b) using a donor-specific neurofilament (NF) antibody to immunocytochemically visualize heterograft efferents. DiI applied onto either homografts or heterografts labeled relatively few graft efferents which could be followed only short distances into the host brain. In contrast, NF-labeled heterograft efferents were both more numerous and extended for longer distances into the host brain than anticipated on the basis of diI tract tracing. The results suggest that anterior hypothalamic grafts implanted in the third ventricle provide substantial input to the adjacent host hypothalamus although it is not known whether these projections arise from SCN cells or from other extra-SCN hypothalamic tissue within these grafts. Nor is it known whether these projections are functional. To determine if neural efferents are required for the restoration of rhythmicity after grafting, we have encapsulated fetal anterior hypothalamus in a permselective polymer which prevents neurite outgrowth but allows diffusible signals to reach the host brain.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013493 Suprachiasmatic Nucleus An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM. Hypothalamic Suprachiasmatic Nuclei,Hypothalamic Suprachiasmatic Nucleus,Suprachiasmatic Nuclei,Suprachiasmatic Nuclei, Hypothalamic,Suprachiasmatic Nucleus, Hypothalamic
D014183 Transplantation, Heterologous Transplantation between animals of different species. Xenotransplantation,Heterograft Transplantation,Heterografting,Heterologous Transplantation,Xenograft Transplantation,Xenografting,Transplantation, Heterograft,Transplantation, Xenograft
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic
D016332 Fetal Tissue Transplantation Transference of fetal tissue between individuals of the same species or between individuals of different species. Grafting, Fetal Tissue,Transplantation, Fetal Tissue,Fetal Tissue Donation,Donation, Fetal Tissue,Donations, Fetal Tissue,Fetal Tissue Donations,Fetal Tissue Grafting,Fetal Tissue Graftings,Fetal Tissue Transplantations,Graftings, Fetal Tissue,Tissue Donation, Fetal,Tissue Donations, Fetal,Tissue Grafting, Fetal,Tissue Graftings, Fetal,Tissue Transplantation, Fetal,Tissue Transplantations, Fetal,Transplantations, Fetal Tissue

Related Publications

M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
January 1993, Brain research bulletin,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
March 1993, Brain research,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
April 2024, Evidence-based nursing,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
January 1994, Restorative neurology and neuroscience,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
September 1998, Chronobiology international,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
October 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
September 2012, Current biology : CB,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
January 1995, Nursing quality connection,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
January 1983, Nursing times,
M N Lehman, and J LeSauter, and C Kim, and S J Berriman, and P A Tresco, and R Silver
March 1999, Neuroscience,
Copied contents to your clipboard!