The effect of phencyclidine on the basal and high potassium evoked extracellular GABA levels in the striatum of freely-moving rats: an in vivo microdialysis study. 1995

H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
Laboratory of Neurochemistry, Hizen National Mental Hospital, Kanzaki Saga, Japan.

The effect of phencyclidine (PCP) on the gamma-aminobutyric acid-ergic (GABAergic) transmission in the striatum of freely-moving rats was investigated using an in vivo microdialysis. The high potassium (100 mM) increased the extracellular GABA level to 4000% of the basal level. Although the basal GABA level in the striatal dialysate did not show either calcium dependency or tetrodotoxin (TTX) sensitivity, the high potassium evoked GABA level was reduced by 82% under calcium-free conditions (with 12.5 mM magnesium) and by 54% in the presence of 10 microM TTX. The systemic administration of PCP (7.5 mg/kg) or the local perfusion of PCP (100 microM and 1 mM) significantly inhibited the high potassium evoked GABA release in the rat striatum. The local perfusion of MK-801 (10 microM and 100 microM), a more potent and selective N-methyl-D-aspartate (NMDA) receptor antagonist, also inhibited the high potassium evoked striatal GABA release. These drugs did not show any significant effect on the basal extracellular GABA level. NMDA (1 mM) either partly or completely blocked the effect of PCP (1 mM) or MK-801 (100 microM) on the high potassium evoked striatal GABA release. On the other hand, nomifensine (100 microM), a dopamine uptake blocker, did not show any effect on the high potassium evoked GABA release. These results suggest that PCP inhibited the striatal GABAergic neuronal transmission through its antagonism of the NMDA receptor.

UI MeSH Term Description Entries
D008297 Male Males
D009627 Nomifensine An isoquinoline derivative that prevents dopamine reuptake into synaptosomes. The maleate was formerly used in the treatment of depression. It was withdrawn worldwide in 1986 due to the risk of acute hemolytic anemia with intravascular hemolysis resulting from its use. In some cases, renal failure also developed. (From Martindale, The Extra Pharmacopoeia, 30th ed, p266) Hoe-984,Linamiphen,Merital,Nomifensin,Nomifensine Maleate,Nomifensine Maleate (1:1),Hoe 984,Hoe984,Maleate, Nomifensine
D010622 Phencyclidine A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust. 1-(1-Phenylcyclohexyl)piperidine,Angel Dust,CL-395,GP-121,Phencyclidine Hydrobromide,Phencyclidine Hydrochloride,Sernyl,Serylan,CL 395,CL395,Dust, Angel,GP 121,GP121
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D016291 Dizocilpine Maleate A potent noncompetitive antagonist of the NMDA receptor (RECEPTORS, N-METHYL-D-ASPARTATE) used mainly as a research tool. The drug has been considered for the wide variety of neurodegenerative conditions or disorders in which NMDA receptors may play an important role. Its use has been primarily limited to animal and tissue experiments because of its psychotropic effects. Dizocilpine,MK-801,MK 801,MK801

Related Publications

H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
April 2004, Brain research,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
September 1990, Journal of neuroscience methods,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
April 1991, Journal of neuroscience methods,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
January 1995, Journal of neural transmission. General section,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
September 1993, The Journal of pharmacology and experimental therapeutics,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
May 2010, Alcoholism, clinical and experimental research,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
October 1999, Brain research bulletin,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
April 2005, Brain research,
H Hondo, and T Nakahara, and K Nakamura, and M Hirano, and H Uchimura, and N Tashiro
May 1994, Toxicology letters,
Copied contents to your clipboard!