Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins. Characterization of binding to a 190-kDa postsynaptic density protein. 1995

R B McNeill, and R J Colbran
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.

Subcellular localization of Ca2+/calmodulin-dependent protein kinase II (CaMKII) by interaction with specific anchoring proteins may be an important mechanism contributing to the regulation of CaMKII. Proteins capable of binding CaMKII were identified by the use of a gel overlay assay with recombinant mouse CaMKII alpha (mCaMKII alpha) or Xenopus CaMKII beta (xCaMKII beta) 32P-autophosphorylated at Thr286/287 as a probe. Numerous [32P]CaMKII-binding proteins were identified in various whole rat tissue extracts, but binding was most prominent to forebrain proteins of 190 kDa (p190) and 140 kDa (p140). Fractionation of forebrain extracts localized p190 and p140 to a crude particulate/cytoskeletal fraction and isolated postsynaptic densities. [32P]m-CaMKII alpha-bound to p190 with an apparent Kd of 609 nM (subunit concentration) and a Bmax of 7.0 pmol of mCaMKII alpha subunit bound per mg of P2 protein, as measured using the overlay assay. Binding of 100 nM [32P]m-CaMKII alpha to p190 was competed by nonradioactive mCaMKII alpha autophosphorylated on Thr286 (EC50% = 200 nM), but to a much lesser extent by nonradioactive mCaMKII alpha autophosphorylated on Thr306 (EC50% > 2000 nM). In addition, nonphosphorylated mCaMKII alpha was a poor competitor for [32P]mCaMKII alpha binding to p190. The competition data indicate that Ca2+/CaM-dependent autophosphorylation at Thr286 promotes binding to p190, whereas, Ca2+/CaM-independent autophosphorylation at Thr306 does not enhance binding. Therefore, CaMKII may become localized to postsynaptic densities by p190 following its activation by an increase of dendritic Ca2+ concentration.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

R B McNeill, and R J Colbran
May 1997, The Journal of biological chemistry,
R B McNeill, and R J Colbran
September 1988, Proceedings of the National Academy of Sciences of the United States of America,
R B McNeill, and R J Colbran
January 1993, The Journal of biological chemistry,
R B McNeill, and R J Colbran
May 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R B McNeill, and R J Colbran
September 1986, The Journal of biological chemistry,
R B McNeill, and R J Colbran
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
R B McNeill, and R J Colbran
January 2002, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
R B McNeill, and R J Colbran
December 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!