Structure and regulation of the gene encoding the neuron-specific protein kinase C substrate neurogranin (RC3 protein). 1995

T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
Section on Metabolic Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.

A 13-kilobase pair genomic DNA encoding a 78-amino acid brain-specific calmodulin-binding protein kinase C (PKC) substrate, neurogranin (Ng/RC3; also known as RC3 or p17), has been sequenced. The Ng/RC3 gene is composed of four exons and three introns, with the protein-coding region located in the first and second exons. This gene was found to have multiple transcriptional start sites clustered within 20 base pairs (bp); it lacks the TATA, GC, and CCAAT boxes in the proximal upstream region of the start sites. The promoter activity was characterized by transfection of 293 cells with nested deletion mutants of the 5'-flanking region fused to the luciferase reporter gene. A minimal construct containing bp +11 to +256 was nearly as active as that covering bp -1508 to +256, whereas a shorter one covering bp +40 to +256 had a greatly reduced activity. Between bp +11 and +40 lies a 12-nucleotide sequence (CCCCGCCCACCC) containing overlapping binding sites for AP2 (CCGCCCACCC) and SP1 (CCCGCC); this region may be important for conferring the basal transcriptional activity of the Ng/RC3 gene. The expression of a Ng/RC3-luciferase fusion construct (-1508/+256) in transfected 293 cells was stimulated by phorbol 12-myristate 13-acetate (PMA), but not by cAMP, arachidonic acid, vitamin D, retinoic acid, or thyroxines T3 and T4. PMA caused a 2-4-fold stimulation of all the reporter gene constructs ranging from +11/+256 to -1508/+256. The stimulatory effects of PMA could be magnified by cotransfection with both Ca(2+)-dependent and -independent phorbol ester-binding PKC-alpha, -beta I, -beta II, -gamma, -delta, and -epsilon cDNAs, but not by non-phorbol ester-binding PKC-zeta cDNA. The Ng/RC3 and PKC-gamma genes have a similar expression pattern in the brain during development. These two genes share at least four conserved sequence segments 1.5 kilobase pair upstream from their transcriptional start sites and a gross similarity in that they possess several AT-rich segments within bp -550 to -950. A near homogeneous 20-kDa DNA-binding protein purified from rat brain was able to bind to these AT-rich regions of both Ng/RC3 and PKC-gamma genes with footprints containing ATTA, ATAA, and AATA sequences.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
November 1993, Brain research,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
August 1993, Endocrinology,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
May 2003, Biochemistry,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
September 1993, Archives of biochemistry and biophysics,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
February 1997, Brain research,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
December 1994, Brain research. Molecular brain research,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
December 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
July 1993, Brain research. Molecular brain research,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
April 1991, FEBS letters,
T Sato, and D M Xiao, and H Li, and F L Huang, and K P Huang
June 1990, The Biochemical journal,
Copied contents to your clipboard!