Computation of left ventricular volume curves from gated blood pool studies without explicit use of edge detection algorithms: concise communication. 1995

U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
University of Colorado Health Sciences Center, Department of Radiology, Denver, USA.

A new technique has been developed to compute left ventricular (LV) time activity curves from gated blood pool (GBP) studies without the use of manual, semiautomated or fully automated edge detection algorithms. The method utilizes the correlation of entropy calculated from the counts of a fixed region of interest covering the left ventricle during a cardiac cycle to compute the LV volume curve for a new patient. The new LV volume curve is obtained through interpolation of those volume curves of a data base which are associated with the closest variations in normalized entropy to the new one. The computed LV time activity curves agree with those obtained from manual or fully automated outlines of the left ventricle within 9 percent for the selected set of 67 patients demonstrating the potential of the method. The accuracy of calculated LV volume curves can be improved theoretically to any degree by increasing the number of cases in the data base of known statistical feature vectors associated with the LV images and LV volume curves. The new method for computation of LV curves is very efficient and robust when compared to traditional techniques.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D015637 Gated Blood-Pool Imaging Radionuclide ventriculography where scintigraphic data is acquired during repeated cardiac cycles at specific times in the cycle, using an electrocardiographic synchronizer or gating device. Analysis of right ventricular function is difficult with this technique; that is best evaluated by first-pass ventriculography (VENTRICULOGRAPHY, FIRST-PASS). Angiography, Gated Radionuclide,Equilibrium Radionuclide Angiography,Equilibrium Radionuclide Ventriculography,Gated Blood-Pool Scintigraphy,Gated Equilibrium Blood-Pool Scintigraphy,Radionuclide Angiography, Gated,Radionuclide Ventriculography, Gated,Scintigraphy, Equilibrium,Ventriculography, Equilibrium Radionuclide,Ventriculography, Gated Radionuclide,Blood-Pool Scintigraphy,Equilibrium Radionuclide Angiocardiography,Gated Equilibrium Blood Pool Scintigraphy,Angiocardiographies, Equilibrium Radionuclide,Angiocardiography, Equilibrium Radionuclide,Angiographies, Equilibrium Radionuclide,Angiographies, Gated Radionuclide,Angiography, Equilibrium Radionuclide,Blood Pool Scintigraphy,Blood-Pool Imaging, Gated,Blood-Pool Imagings, Gated,Blood-Pool Scintigraphies,Blood-Pool Scintigraphies, Gated,Blood-Pool Scintigraphy, Gated,Equilibrium Radionuclide Angiocardiographies,Equilibrium Radionuclide Angiographies,Equilibrium Radionuclide Ventriculographies,Equilibrium Scintigraphies,Equilibrium Scintigraphy,Gated Blood Pool Imaging,Gated Blood Pool Scintigraphy,Gated Blood-Pool Imagings,Gated Blood-Pool Scintigraphies,Gated Radionuclide Angiographies,Gated Radionuclide Angiography,Gated Radionuclide Ventriculographies,Gated Radionuclide Ventriculography,Imaging, Gated Blood-Pool,Imagings, Gated Blood-Pool,Radionuclide Angiocardiographies, Equilibrium,Radionuclide Angiocardiography, Equilibrium,Radionuclide Angiographies, Equilibrium,Radionuclide Angiographies, Gated,Radionuclide Angiography, Equilibrium,Radionuclide Ventriculographies, Equilibrium,Radionuclide Ventriculographies, Gated,Radionuclide Ventriculography, Equilibrium,Scintigraphies, Blood-Pool,Scintigraphies, Equilibrium,Scintigraphies, Gated Blood-Pool,Scintigraphy, Blood-Pool,Scintigraphy, Gated Blood-Pool,Ventriculographies, Equilibrium Radionuclide,Ventriculographies, Gated Radionuclide
D016277 Ventricular Function, Left The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance. Left Ventricular Function,Function, Left Ventricular,Functions, Left Ventricular,Left Ventricular Functions,Ventricular Functions, Left

Related Publications

U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
September 1984, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
September 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
January 1982, Circulation,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
October 1987, Radioisotopes,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
March 1983, The American journal of cardiology,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
May 1983, Radiology,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
July 1979, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
October 2010, Nuclear medicine communications,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
September 1988, Journal of cardiology,
U Raff, and P F Vargas, and A L Scherzinger, and L H Rodriguez, and B M Groves
February 1985, British heart journal,
Copied contents to your clipboard!