Thyrotropin-releasing hormone gene expression in cultured anterior pituitary cells: role of gender. 1995

T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
Department of Medicine, Brown University/Rhode Island Hospital, Providence 02903.

The present studies were undertaken to investigate the effect of gender on thyrotropin-releasing hormone (TRH) gene expression in cultured anterior pituitary (AP) cells. AP cells derived from 15-day-old male, female, or female pups that had been neonatally treated with testosterone propionate (TP), were cultured for up to 18 days in a modified DMEM/L-15 medium containing 10% fetal calf serum. TRH and AP hormones including GH, prolactin (PRL), luteinizing hormone (LH) and thyrotropin (TSH) were measured by RIA, proTRH mRNA was determined by in situ hybridization using a full-length riboprobe followed by quantification with a computer-assisted image analysis system. Cultures derived from female rats contained significantly (p < 0.01) higher amounts of TRH and secreted approximately twice (p < 0.01) as much TRH under basal conditions and in response to activators of the protein kinase A and C pathways, respectively. In situ hybridization studies revealed that 'female' cultures contained significantly higher amounts of proTRH mRNA compared to 'male' cultures. Computer-assisted image analysis demonstrated that proTRH mRNA levels were 3.5 times higher in 'female' compared to 'male' cultures (p < 0.01), an effect that was the result of a significantly higher number (3 times; p < 0.01) of cells expressing proTRH mRNA in 'female' cultures. Neonatal TP treatment did not affect either proTRH mRNA or TRH peptide levels. In vitro testosterone treatment resulted in a moderate rise (p < 0.05) of intracellular TRH accumulation in cultures from both sexes, however, proTRH mRNA levels remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012636 Secretory Rate The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa. Rate, Secretory,Rates, Secretory,Secretory Rates
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms
D013973 Thyrotropin-Releasing Hormone A tripeptide that stimulates the release of THYROTROPIN and PROLACTIN. It is synthesized by the neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, TRH (was called TRF) stimulates the release of TSH and PRL from the ANTERIOR PITUITARY GLAND. Protirelin,Thyroliberin,Abbott-38579,Antepan,Proterelin Tartrate,Proterelin Tartrate Hydrate,Protirelin Tartrate (1:1),Relefact TRH,Stimu-TSH,TRH Ferring,TRH Prem,Thypinone,Thyroliberin TRH Merck,Thyrotropin-Releasing Factor,Thyrotropin-Releasing Hormone Tartrate,Abbott 38579,Abbott38579,Hydrate, Proterelin Tartrate,Prem, TRH,Stimu TSH,StimuTSH,TRH, Relefact,Tartrate Hydrate, Proterelin,Thyrotropin Releasing Factor,Thyrotropin Releasing Hormone,Thyrotropin Releasing Hormone Tartrate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
August 1987, Endocrinology,
T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
June 1992, The Biochemical journal,
T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
November 1995, Endocrinology,
T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
April 1992, The Biochemical journal,
T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
January 1976, Annales d'endocrinologie,
T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
April 1996, Endocrine,
T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
September 1979, Experimental cell research,
T O Bruhn, and J M Rondeel, and T G Bolduc, and I M Jackson
December 1989, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!