Adenovirus-mediated gene transfer to human bronchial submucosal glands using xenografts. 1995

J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
Department of Medicine, University of Pennsylvania, Philadelphia 19104, USA.

The cystic fibrosis (CF) transmembrane conductance regulator has been localized to both submucosal glands and surface epithelium, suggesting that both glandular and surface epithelium may be important targets for gene therapy. To determine the distribution and efficiency of recombinant adenovirus-mediated gene transfer to human airway submucosal glands, an in vivo model was developed by heterotopically transplanting human bronchial segments from both normal and CF lung tissue into severe combined immunodeficient mice. A serotype 5 E1-deleted recombinant adenovirus containing a lacZ reporter gene driven by the cytomegalovirus promoter (H5.010CMVlacZ) was used to infect the xenografts. Transgene expression was correlated with three factors: 1) viral titer, 2) penetration of microspheres, and 3) dwell time of the viral instillate. At viral titers ranging from 10(8) to 10(11) plaque forming units/ml, expression of the lacZ gene was observed in a subpopulation of epithelial cells within approximately 40% of submucosal glands, with more efficient gene transfer to the ducts than the secretory tubules. Within individual glands, gene transfer varied from < 1% to approximately 20% of submucosal cells, including duct, mucous, and serous cells. Adenovirus-sized fluorescent microspheres were found to penetrate only some of the submucosal glands, suggesting that the gene transfer efficiency to submucosal tubules is due to limited viral particle penetration rather than tropism. Gene transfer to surface epithelial cells was inefficient. However, the percentage of transduced surface epithelial cells increased from < 1% to 5-10% as the dwell time of viral solution was increased from 5 min to 1 h, indicating that the time allowed for virus binding and entry is important for gene transfer efficiency.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D003550 Cystic Fibrosis An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION. Mucoviscidosis,Cystic Fibrosis of Pancreas,Fibrocystic Disease of Pancreas,Pancreatic Cystic Fibrosis,Pulmonary Cystic Fibrosis,Cystic Fibrosis, Pancreatic,Cystic Fibrosis, Pulmonary,Fibrosis, Cystic,Pancreas Fibrocystic Disease,Pancreas Fibrocystic Diseases
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine
D000256 Adenoviridae A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases. Adenoviruses,Ichtadenovirus,Adenovirus,Ichtadenoviruses

Related Publications

J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
June 1994, The American journal of physiology,
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
September 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
January 1988, Folia morphologica,
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
April 1998, Gene therapy,
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
June 1996, Human gene therapy,
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
January 2011, Methods in molecular biology (Clifton, N.J.),
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
January 2003, Methods in molecular biology (Clifton, N.J.),
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
January 1993, Trends in cardiovascular medicine,
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
January 1997, Life sciences,
J M Pilewski, and J F Engelhardt, and J E Bavaria, and L R Kaiser, and J M Wilson, and S M Albelda
January 1998, Blood,
Copied contents to your clipboard!