Acute renal hemodynamic effects of ACE inhibition in diabetic hyperfiltration: role of kinins. 1995

R Komers, and M E Cooper
Department of Medicine, Heidelberg Repatriation Hospital, University of Melbourne, Victoria, Australia.

Angiotensin converting enzyme (ACE) inhibitors not only reduce angiotensin II (ANG II) levels but also inhibit kinin degradation. The relative roles of ANG II and bradykinin in the acute action of ACE inhibitors on renal hemodynamic parameters in rats after 3 wk of diabetes were explored using antagonists of the ANG II type 1 (AT1) and the bradykinin B2 receptors. Conscious control and streptozotocin diabetic male Sprague-Dawley rats were randomized to receive vehicle, the ACE inhibitor, ramiprilat, the B2-receptor blocker, HOE-140, the AT1-receptor blocker, valsartan, or the combination of ramiprilat and HOE-140. Systolic blood pressure, glomerular filtration rate (GFR), renal plasma flow (RPF), filtration fraction and urinary flow, and sodium excretion were assessed before and during treatment. Diabetic animals had higher GFR and a tendency toward increased RPF and filtration fraction compared with control animals. Acute ramiprilat infusion decreased GFR significantly in diabetic but not in control animals. Valsartan and the combination of ramiprilat and HOE-140 reduced blood pressure to a similar degree to ramiprilat alone, yet did not reduce GFR. No decrease in GFR was observed in any control rat groups. Ramiprilat decreased RPF in diabetic rats but increased RPF in control rats. No such effects on RPF were observed with valsartan. HOE-140 alone did not influence any renal parameter in the diabetic rats. Diabetic rats had increased urinary flow and sodium excretion, but these parameters were not influenced by any drug regimen.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007705 Kinins A generic term used to describe a group of polypeptides with related chemical structures and pharmacological properties that are widely distributed in nature. These peptides are AUTACOIDS that act locally to produce pain, vasodilatation, increased vascular permeability, and the synthesis of prostaglandins. Thus, they comprise a subset of the large number of mediators that contribute to the inflammatory response. (From Goodman and Gilman's The Pharmacologic Basis of Therapeutics, 8th ed, p588) Kinin
D008297 Male Males
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000068756 Valsartan A tetrazole derivative and ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKER that is used to treat HYPERTENSION. CGP 48933,Diovan,Kalpress,Miten,N-valeryl-N-((2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)valine,Nisis,Provas,Tareg,Vals,48933, CGP
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic

Related Publications

R Komers, and M E Cooper
December 1999, Biology of the neonate,
R Komers, and M E Cooper
January 1992, Agents and actions. Supplements,
R Komers, and M E Cooper
June 1993, Kidney international,
R Komers, and M E Cooper
January 1992, Eicosanoids,
R Komers, and M E Cooper
May 1991, The American journal of physiology,
R Komers, and M E Cooper
August 1994, The Journal of pharmacology and experimental therapeutics,
R Komers, and M E Cooper
September 2001, The Journal of laboratory and clinical medicine,
R Komers, and M E Cooper
January 1990, The Journal of diabetic complications,
Copied contents to your clipboard!