Activation of the herpes simplex virus immediate-early gene promoters by neuronally expressed POU family transcription factors. 1995

K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
Department of Molecular Pathology, University College London Medical School, U.K.

Herpes simplex virus immediate-early (IE) promoters contain the TAATGARAT motif which acts as a target site for the cellular POU family transcription factors Oct-1 and Oct-2. Here we show that other members of the POU family that are expressed in sensory neurons can also affect IE promoter activity. In particular, two members of the Brn-3 family of POU proteins Brn-3a and Brn-3c can activate the IE-1 and IE-3 promoters when co-transfected into fibroblasts and neuronal cells whereas a third member Brn-3b represses IE promoter activity. In contrast, Brn-3 proteins cannot overcome the inhibitory effect of neuronal Oct-2 on IE promoter activity in co-transfections nor do they prevent transactivation of the IE promoters by the Oct-1-Vmw65 complex. The potential regulation of the IE promoters by several different neuronally expressed POU proteins during the initiation, maintenance and re-activation of latent infection in sensory neurons is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
October 1990, Neuroscience letters,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
July 1987, Journal of virology,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
April 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
December 1995, Nucleic acids research,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
November 2022, Journal of virology,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
February 1992, Virology,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
August 1998, Biochemical Society transactions,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
October 1987, Journal of virology,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
November 1985, Nucleic acids research,
K A Lillycrop, and Y Z Liu, and T Theil, and T Möröy, and D S Latchman
January 1999, The international journal of biochemistry & cell biology,
Copied contents to your clipboard!