Binding of malate dehydrogenase and NADH channelling to complex I. 1994

J Ovádi, and Y Huang, and H O Spivey
Institute of Enzymology, Hungarian Academy of Sciences, Budapest.

As previously reported, mitochondrial malate dehydrogenase (MDH) binds to purified complex I of the electron transport system. With conditions used in previous reports, MDH binds even more extensively, but probably predominantly non-specifically, to the matrix side of the inner mitochondrial membrane of submitochondrial particles (SMP). Herein we report experimental conditions for highly specific binding of malate dehydrogenase to complex I within SMP. These conditions permit us to demonstrate NADH channelling from malate dehydrogenase to complex I using the competing reaction test. This test, though not ideal for all situations, has several advantages over the enzyme buffering test previously used. These advantages should facilitate further studies elucidating NADH channelling to complex I from MDH and other dehydrogenases. Independent evidence of NADH channelling to the electron transport chain and the potential advantages of substrate channelling in general are also discussed. Substrate channelling from MDH in particular may be especially beneficial because of the unfavourable equilibrium and kinetics of this enzyme reaction.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010071 Oxaloacetates Derivatives of OXALOACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include a 2-keto-1,4-carboxy aliphatic structure. Ketosuccinates,Oxosuccinates,Oxaloacetic Acids
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Ovádi, and Y Huang, and H O Spivey
September 1979, The Journal of biological chemistry,
J Ovádi, and Y Huang, and H O Spivey
January 2005, Cell biochemistry and biophysics,
J Ovádi, and Y Huang, and H O Spivey
January 1973, Archives of biochemistry and biophysics,
J Ovádi, and Y Huang, and H O Spivey
July 1978, The Journal of biological chemistry,
J Ovádi, and Y Huang, and H O Spivey
August 1999, Biochemical Society transactions,
J Ovádi, and Y Huang, and H O Spivey
January 1979, Archives of biochemistry and biophysics,
J Ovádi, and Y Huang, and H O Spivey
December 1970, Biochimica et biophysica acta,
J Ovádi, and Y Huang, and H O Spivey
June 2004, Biochemical and biophysical research communications,
J Ovádi, and Y Huang, and H O Spivey
May 1991, European journal of biochemistry,
Copied contents to your clipboard!