The lateral photoreceptor of the barnacle, Balanus eburneus: quantitative morphology and fine structure. 1976

W Krebs, and B Schaten

The lateral eye of the barnacle, Balanus eburneus, fixed in highly concentrated osmium is a lens-shaped body of approximately 250 mum in diameter and about 75 mum thick. It contains three photoreceptor cells which occupy about 42% of its volume. The photoreceptor cells are irregularly shaped and extend countless dendritic processes which bear rhabdomeres at their ends. Individual rhabdomeres come into contact with rhabdomeres originating from dendrites of the same or of one of the other visual cells. Thirteen per cent of the volume of the photoreceptor cells is taken up by the rhabdomeres. The membranes of the rhabdomeric microvilli contain globular subunits which suggest a 70 A spacing of rhodopsin molecules. There are two kinds of glial cells. One kind, type A glial cells, makes contact with the fibrous capsule of the photoreceptor. The other kind, type B glial cells, is associated with the photoreceptor cells and extends countless tiny cytoplasmic extensions which interdigitate with similar extensions of the receptor cells. There are approximately 95 type B glial cells and 130 type A glial cells in the receptor. The cytoplasm of the photoreceptor cells contains countless small Golgi fields, mitochondria, microtubules, multivesicular and multilamellar bodies. The extracellular space of the photoreceptor is less than 0.1% of its total volume.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009992 Osmium A very hard, gray, toxic, and nearly infusible metal element, atomic number 76, atomic weight 190.2, symbol Os.
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006652 Histological Techniques Methods of preparing tissue for examination and study of the origin, structure, function, or pathology. Histologic Technic,Histologic Technics,Histologic Technique,Histologic Techniques,Histological Technics,Technic, Histologic,Technics, Histologic,Technique, Histologic,Techniques, Histologic,Histological Technic,Histological Technique,Technic, Histological,Technics, Histological,Technique, Histological,Techniques, Histological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001468 Thoracica A superorder of marine CRUSTACEA, free swimming in the larval state, but permanently fixed as adults. There are some 800 described species, grouped in several genera, and comprising of two major orders of barnacles: stalked (Pedunculata) and sessile (Sessilia). Balanus,Barnacles,Pedunculata,Sessilia,Barnacle,Pedunculatas,Sessilias,Thoracicas
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple

Related Publications

W Krebs, and B Schaten
December 1971, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete,
W Krebs, and B Schaten
September 1980, Bulletin of environmental contamination and toxicology,
W Krebs, and B Schaten
January 1982, Archives of environmental contamination and toxicology,
W Krebs, and B Schaten
April 1971, The Journal of general physiology,
W Krebs, and B Schaten
November 1981, Bulletin of environmental contamination and toxicology,
Copied contents to your clipboard!