Excitatory synaptic connections onto rat hippocampal inhibitory cells may involve a single transmitter release site. 1994

O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
Laboratoire de Neurobiologie Cellulaire, Institut Pasteur, Paris, France.

1. Whole-cell tight-seal records of excitatory postsynaptic currents (EPSCs) were made from inhibitory cells in the CA3 region of thin hippocampal slices. We tested the hypothesis that excitatory synaptic connections made on inhibitory cells involve few transmitter release sites. 2. EPSCs impinging on inhibitory cells had a time to peak of 0.4-3.8 ms and an amplitude of 8-90 pA at a holding potential of -60 mV. They were suppressed by the excitatory amino acid antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonovaleric acid (APV). 3. Addition of tetrodotoxin (TTX) and Co2+ to the external solution reduced the frequency of EPSCs from 0.90 to 0.25 s-1 (n = 24 cells). In the majority of cells EPSC amplitude distributions were not significantly changed. 4. Increasing Ca2+ and reducing Mg2+ in the external solution, in order to enhance the probability of transmitter release, did not change EPSC amplitude distributions. In contrast, amplitude histograms for IPSCs recorded from pyramidal cells were shifted to higher mean values in this solution. 5. EPSCs were elicited in inhibitory cells by electrical stimulation via a glass pipette placed near to pyramidal cells in stratum pyramidale. EPSCs elicited by weak stimuli had similar amplitude distributions to excitatory synaptic events recorded in the presence of TTX and Co2+. 6. These findings suggest excitatory synaptic connections made with CA3 inhibitory cells involve few or possibly just one transmitter release site.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
January 2003, The Journal of physiology,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
December 1993, Nature,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
May 1994, Proceedings of the National Academy of Sciences of the United States of America,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
February 2014, Neuron,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
September 1984, Journal of neurophysiology,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
October 2020, Brain sciences,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
July 1991, Synapse (New York, N.Y.),
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
November 1988, Neuroscience,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
August 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
O Arancio, and H Korn, and A Gulyas, and T Freund, and R Miles
May 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!