Although numerous photosensitizers have been used experimentally to decontaminate viruses in cellular blood components, little is known about their mechanisms of photoinactivation. Using M13 bacteriophage and vesicular stomatitis virus (VSV) as model viruses, we have investigated alteration of the viral genome, protein and envelope after phototreatment. Methylene blue (MB) and aluminum phthalocyanine tetrasulfonate (AlPcS4) phototreatment inactivated bacteriophage M13 and decreased the fraction of single-stranded circular genomic DNA (sc-DNA) by converting it to linear form. This conversion was enhanced by treating the extracted DNA with piperidine at 55 degrees C. Piperidine-labile breaks were well correlated to phage survival (5.1% sc-DNA at 1.7% phage survival for MB) under conditions where only minor differences were seen in the relative abundance of M13 coat protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Neither aluminum phthalocyanine (AlPc) nor merocyanine 540 (MC540) inactivated M13 nor were there significant changes observed in DNA and coat protein. Methylene blue, AlPcS4 and AlPc inactivated VSV and inhibited fusion of the virus envelope to Vero cells at pH 5.7 (i.e. with plasma membrane). However, the degree of this inhibition was small compared to the extent of virus inactivation (43% inhibition vs. 4.7 log10 or 99.998% inactivation, for MB). In contrast, an antibody to VSV G-spike protein inhibited fusion at pH 5.7 by 52% with a concomitant decline in VSV infectivity of 0.15 log10 (30%). Few changes were observed in the relative abundance of G protein for MB and AlPcS4 phototreated samples and no additional protein bands were observed on SDS-PAGE.(ABSTRACT TRUNCATED AT 250 WORDS)