Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. 1995

J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.

In chromaffin cells of adrenal medulla, heterogeneity of Ca2+ stores has been suggested with respect to the mechanisms of Ca2+ uptake and release. We have examined Ca(2+)-ATPases responsible for loading of Ca2+ stores in these cells for their sensitivity to thapsigargin, a highly selective inhibitor of the SERCA [sarco(endo)plasmic reticulum calcium ATPase] family of intracellular Ca2+ pumps. Using immunostaining, we studied the distribution of Ca(2+)-ATPases, and of receptors for inositol 1,4,5-trisphosphate (InsP3) and ryanodine, in the density-gradient fractions of microsomes from bovine adrenal medulla. In parallel, we examined distribution profiles of ATP-dependent Ca2+ uptake in the same fractions, along with subcellular markers for plasma membranes and endoplasmic reticulum (ER). Two Ca(2+)-ATPase-like proteins (116 and 100 kDa) were detected, consistent with the presence of SERCA 2b and SERCA 3 isoenzymes of Ca2+ pumps. The distribution of these putative Ca(2+)-ATPase iso-enzymes paralleled that of InsP3 and ryanodine receptors. This distribution of ER Ca(2+)-ATPases, as determined immunologically, was consistent with that of thapsigargin-sensitive, but not of thapsigargin-insensitive, ATP-dependent Ca2+ uptake. In contrast, the distribution profile of the thapsigargin-insensitive Ca2+ uptake was strongly correlated to that of plasma membranes, and co-distributed with plasma membrane Ca(2+)-ATPase detected immunologically. In isolated, permeabilized chromaffin cells, InsP3 and caffeine induced Ca2+ release following an ATP-dependent Ca2+ accumulation to the stores. This accumulation was abolished by thapsigargin. Together, these data strongly indicate that the thapsigargin-sensitive, presumably SERCA-type Ca(2+)-ATPases account for Ca2+ uptake to InsP3-sensitive, as well as to caffeine-sensitive, Ca2+ stores in bovine adrenal chromaffin cells.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic

Related Publications

J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
December 1996, Japanese journal of pharmacology,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
January 1992, Brain research,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
September 1991, The Biochemical journal,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
May 1991, Journal of neurochemistry,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
February 1990, The Biochemical journal,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
October 1994, The Journal of biological chemistry,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
May 1991, The Biochemical journal,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
December 1993, The Journal of biological chemistry,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
January 1994, Nature,
J C Poulsen, and C Caspersen, and D Mathiasen, and J M East, and R E Tunwell, and F A Lai, and N Maeda, and K Mikoshiba, and M Treiman
March 1995, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!