Early malnutrition followed by nutritional restoration lowers the conduction velocity and excitability of the corticospinal tract. 1995

G J Quirk, and W R Mejia, and H Hesse, and H Su
Department of Physiology, Universidad Nacional Autónoma de Honduras (U.N.A.H.), Facultad de Medicina, Tegucigalpa, Honduras.

The physiological sequelae of undernutrition were investigated in rats that were undernourished from day 1-21 and subsequently free-fed to 75 days of age. Population responses were recorded in the corticospinal tract following surface stimulation of the motor cortex, which activates corticospinal cells directly, and also indirectly via cortical synapses. The conduction velocity of the fastest corticospinal fibers in 15 malnourished rats was 16.9 m/s, significantly slower (P < 0.001) than the 20.0 m/s observed in 26 controls. In addition, the excitability of corticospinal neurons to direct stimulation was reduced as much as 67% in malnourished rats, while no effect on synaptic activation was observed. Our findings suggest that early malnutrition reduces the number of large fibers in the adult corticospinal tract. These results are discussed with respect to known morphological and behavioral effects of malnutrition in rats and their relevance to humans.

UI MeSH Term Description Entries
D008297 Male Males
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009748 Nutrition Disorders Disorders caused by nutritional imbalance, either overnutrition or undernutrition. Nutritional Disorders,Nutrition Disorder,Nutritional Disorder
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G J Quirk, and W R Mejia, and H Hesse, and H Su
December 1985, Lancet (London, England),
G J Quirk, and W R Mejia, and H Hesse, and H Su
January 1963, Physiologia bohemoslovenica,
G J Quirk, and W R Mejia, and H Hesse, and H Su
April 2022, Brain structure & function,
G J Quirk, and W R Mejia, and H Hesse, and H Su
March 1967, Experimental neurology,
G J Quirk, and W R Mejia, and H Hesse, and H Su
November 1985, Annals of neurology,
G J Quirk, and W R Mejia, and H Hesse, and H Su
December 1986, EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete,
G J Quirk, and W R Mejia, and H Hesse, and H Su
January 2018, Frontiers in human neuroscience,
G J Quirk, and W R Mejia, and H Hesse, and H Su
July 1978, Circulation research,
G J Quirk, and W R Mejia, and H Hesse, and H Su
February 1990, Boletin medico del Hospital Infantil de Mexico,
G J Quirk, and W R Mejia, and H Hesse, and H Su
October 2019, Neuroscience letters,
Copied contents to your clipboard!