Chloride-dependent Na-H exchange. A novel mechanism of sodium transport in colonic crypts. 1995

V M Rajendran, and J Geibel, and H J Binder
Department of Internal Medicine, Yale University, New Haven, Connecticut 06520, USA.

The mechanism of sodium movement across apical membrane of colonic crypt cells of rat distal colon was examined in studies of both 22Na uptake by apical membrane vesicles (AMV) and the rate of intracellular pH (pHi) recovery from an acid load by the addition of lumen sodium. In the presence of chloride but not in its absence, 22Na uptake in crypt AMV was stimulated by an outward gradient of either [H+] or [Na+]. 22Na uptake stimulated by an outward [Na+] gradient was also observed in the presence of other halides in the order of chloride > bromide > fluoride > iodide. pHi recovery from an acid load was both lumen sodium- and chloride-dependent, and the rate of pHi recovery by lumen sodium in the presence of chloride was 65-fold greater than that in the absence of chloride (dpH/dt is 655.4 and 10.2 in the presence and absence of chloride, respectively). One mM amiloride inhibited both [H+] gradient-stimulated 22Na uptake in the presence of chloride in crypt AMV (80%) and lumen sodium- and chloride-dependent pHi recovery in crypt cells (96%). [H+] gradient stimulation of 22Na uptake by crypt AMV in the presence of chloride was less sensitive to amiloride than amiloride inhibition of Na-H exchange in colonic surface AMV. These studies provide compelling evidence that a chloride-dependent Na-H exchange that is relatively amiloride-resistant is present in the apical membrane of colonic crypt cells. As prior studies have not identified a chloride-dependent Na-H exchange, the molecular and functional basis of this novel transport process is not known.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion

Related Publications

V M Rajendran, and J Geibel, and H J Binder
July 2002, American journal of physiology. Cell physiology,
V M Rajendran, and J Geibel, and H J Binder
October 1983, The American journal of physiology,
V M Rajendran, and J Geibel, and H J Binder
January 1987, The American journal of physiology,
V M Rajendran, and J Geibel, and H J Binder
September 2013, American journal of physiology. Cell physiology,
V M Rajendran, and J Geibel, and H J Binder
July 1983, The American journal of physiology,
V M Rajendran, and J Geibel, and H J Binder
July 1999, The Journal of membrane biology,
V M Rajendran, and J Geibel, and H J Binder
May 1992, The Journal of membrane biology,
V M Rajendran, and J Geibel, and H J Binder
December 1990, The American journal of physiology,
V M Rajendran, and J Geibel, and H J Binder
June 1986, The American journal of physiology,
V M Rajendran, and J Geibel, and H J Binder
August 1996, The American journal of the medical sciences,
Copied contents to your clipboard!