Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia. 1995

T Ebendal, and A Tomac, and B J Hoffer, and L Olson
Department of Developmental Neuroscience, Uppsala University, Sweden.

Human recombinant glial cell line-derived neurotrophic factor (GDNF) was tested for its ability to stimulate fiber formation and neuron survival in primary cultures of peripheral ganglia dissected from the chicken embryo. GDNF, first characterized by its actions on central nervous system (CNS) neurons, had a marked stimulatory effect on fiber outgrowth in sympathetic and ciliary ganglia. Weaker responses were evoked in sensory spinal and nodose ganglia and in the ganglion of Remak. In addition, survival of neurons from the sympathetic and ciliary ganglia was stimulated by GDNF at 50 ng/ml. The effects were not mimicked by the distant but related protein transforming growth factor beta 1 (TGF beta 1). The profile of neurons stimulated by GDNF is also distinct from the patterns of stimulation shown by nerve growth factor (NGF), stimulating strongly sympathetic but not ciliary ganglia, and ciliary neurotrophic factor (CNTF), stimulating mainly the ciliary ganglion. Moreover, using in situ hybridization histochemistry, GDNF was demonstrated to be present in the pineal gland in the newborn rat, a target organ for sympathetic innervation. The present results suggest that GDNF is likely to act upon receptors present in several autonomic and sensory neuronal populations. GDNF may serve to support fiber outgrowth and cell survival in peripheral ganglia, adding yet one more trophic factor to the list of specific proteins controlling development and maintenance of the peripheral nervous system.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations

Related Publications

T Ebendal, and A Tomac, and B J Hoffer, and L Olson
April 2003, Biochemical and biophysical research communications,
T Ebendal, and A Tomac, and B J Hoffer, and L Olson
May 1995, The Journal of comparative neurology,
T Ebendal, and A Tomac, and B J Hoffer, and L Olson
July 1999, Neuroreport,
T Ebendal, and A Tomac, and B J Hoffer, and L Olson
May 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Ebendal, and A Tomac, and B J Hoffer, and L Olson
January 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Ebendal, and A Tomac, and B J Hoffer, and L Olson
October 2011, Transplantation,
Copied contents to your clipboard!