Mutations in the DNA-binding and dimerization domains of v-Rel are responsible for altered kappa B DNA-binding complexes in transformed cells. 1995

R Hrdlicková, and J Nehyba, and H R Bose
Department of Microbiology, University of Texas at Austin 78712-1095, USA.

The c-rel proto-oncogene encodes a member of the Rel/NF-kappa B family of transcription factors. The oncogenic viral form, v-rel, transduced by avian reticuloendotheliosis virus T, induces lymphoid tumors. v-Rel transformation may be mediated directly by binding of v-Rel to cognate DNA sites, resulting in altered gene expression, and/or indirectly by releasing Rel/NF-kappa B transcription factors from cytoplasmic retention molecules, resulting in their translocation to the nucleus and the inappropriate expression of genes under kappa B control. v-Rel-transformed cell lines of different phenotypes contained v-Rel as well as endogenous kappa B DNA-binding proteins in nuclear extracts. Kinetic analysis with avian leukosis virus-transformed B-cell lines expressing v-Rel or c-Rel indicated that the presence of endogenous kappa B DNA-binding proteins in the nucleus is temporally correlated with the relocalization of v-Rel to the cytoplasm. Supershift analysis of these DNA-binding complexes revealed that v-Rel was present in all of the nuclear DNA-binding complexes heterodimerized with c-Rel, NF-kappa B1, and other proteins. In contrast, c-Rel-transformed cells exhibited a less-complex pattern of nuclear kappa B DNA-binding complexes, and the nuclear appearance of these endogenous complexes was not observed. Studies with c-/v-Rel hybrids suggest that the induction of the endogenous kappa B DNA-binding complexes is the result of the mutations in the C-terminal region of the Rel homology (RH) domain of v-Rel. Moreover, v-Rel differed from c-Rel in its DNA-binding specificity. The altered DNA-binding specificity of v-Rel was associated with mutations located in the N-terminal part of the RH domain of v-Rel. These results suggest that two different regions of v-Rel (both located in the RH domain) influence the formation of kappa B DNA-binding complexes differently.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R Hrdlicková, and J Nehyba, and H R Bose
March 1995, Journal of virology,
R Hrdlicková, and J Nehyba, and H R Bose
October 1993, Proceedings of the National Academy of Sciences of the United States of America,
R Hrdlicková, and J Nehyba, and H R Bose
March 1991, Proceedings of the National Academy of Sciences of the United States of America,
R Hrdlicková, and J Nehyba, and H R Bose
August 2000, The Journal of biological chemistry,
R Hrdlicková, and J Nehyba, and H R Bose
March 1992, Oncogene,
R Hrdlicková, and J Nehyba, and H R Bose
March 1995, Virology,
R Hrdlicková, and J Nehyba, and H R Bose
May 1994, Oncogene,
R Hrdlicková, and J Nehyba, and H R Bose
September 1993, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
Copied contents to your clipboard!