Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. 1995

B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
Groningen Biomolecular Sciences and Biotechnology Institute, Department of Genetics, University of Groningen, Haren, The Netherlands.

Transcription of the ATP-dependent deoxynuclease operon (addAB), as monitored by means of an addAB-lacZ transcriptional fusion, has a low, constitutive level and is initiated from a sigma A type promoter. Transcription of addAB is independent of DNA-damaging agents known to induce the SOS response in Bacillus subtilis. However, addAB transcription increased significantly during competence development. This competence-specific induction was dependent on the gene products of srfA, degU and comK, but not on that of recA. Deletion analysis of the addAB promoter region demonstrated that the competence-specific transcription induction requires DNA sequences located upstream of the addAB promoter that associated with ComK, the competence transcription factor. The latter finding indicates that a direct regulatory link exists between the establishment of the competent state and the synthesis of AddAB, required for recombination of internalized donor DNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010453 Peptide Synthases Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups. Peptide Synthetases,Acid-Amino-Acid Ligases,Acid Amino Acid Ligases,Ligases, Acid-Amino-Acid,Synthases, Peptide,Synthetases, Peptide
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
August 1979, European journal of biochemistry,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
January 1974, Molecular biology,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
March 1981, European journal of biochemistry,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
April 1973, FEBS letters,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
January 1974, Mutation research,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
November 1973, The Journal of biological chemistry,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
July 1987, Journal of bacteriology,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
November 1980, Journal of general microbiology,
B J Haijema, and L W Hamoen, and J Kooistra, and G Venema, and D van Sinderen
November 1974, Soviet genetics,
Copied contents to your clipboard!