P1 plasmid partition: binding of P1 ParB protein and Escherichia coli integration host factor to altered parS sites. 1994

B E Funnell, and L Gagnier
Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada.

The Escherichia coli integration host factor (IHF) participates in P1 plasmid partition by assisting the interaction of P1 ParB protein with its specific site, parS. Together they form an extremely high-affinity protein-DNA complex, in which parS DNA is wrapped around a core of ParB and IHF protein in a precise three-dimensional conformation. We have investigated the interaction of ParB and IHF with mutant DNA sites, to examine protein specificity and cooperativity. The results indicate that ParB specifically recognizes two separate types of sequence repeats in its minimal binding site in one half of the parS site. The affinity of ParB or IHF for parS is much greater in the presence of the other protein. Mutations that decrease ParB or IHF binding to parS have relatively minor defects in vivo, because each protein still binds well to parS in the presence of the other protein. We observed that ParB acts better when provided in cis than in trans to parS in vivo. Our experiments suggest that in vivo, the local concentration of ParB protein near the plasmid is high, so that ParB can act reasonably well to promote partition in cells without IHF. However, this activity is lower than in wild-type cells, indicating that IHF is essential for long-term plasmid stability.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001685 Biological Factors Endogenously synthesized compounds that influence biological processes not otherwise classified under ENZYMES; HORMONES or HORMONE ANTAGONISTS. Biologic Factors,Biological Factor,Factor, Biologic,Factor, Biological,Factors, Biological,Biologic Factor,Factors, Biologic

Related Publications

B E Funnell, and L Gagnier
September 1988, Proceedings of the National Academy of Sciences of the United States of America,
B E Funnell, and L Gagnier
December 2001, Molecular microbiology,
B E Funnell, and L Gagnier
May 2004, Molecular microbiology,
B E Funnell, and L Gagnier
June 1996, Journal of molecular biology,
B E Funnell, and L Gagnier
June 1997, The Journal of biological chemistry,
B E Funnell, and L Gagnier
April 2001, The Journal of biological chemistry,
B E Funnell, and L Gagnier
January 1995, Acta biochimica Polonica,
Copied contents to your clipboard!