Genetic requirements for initiating asexual development in Aspergillus nidulans. 1994

J Wieser, and B N Lee, and J w Fondon, and T H Adams
Department of Biology, Texas A & M University, College Station 77843, USA.

Conidiation in the filamentous ascomycete Aspergillus nidulans requires activation of brlA, a well-characterized transcriptional regulator of genes that are induced specifically during asexual development. We have isolated and characterized developmental mutations in six loci, designated fluG, flbA, flbB, flbC, flbD, and flbE, that result in defective development and reduced brlA expression. These mutants grow indeterminately to produce masses of aerial hyphae resulting in the formation of cotton-like colonies with a "fluffy" morphology. The results of growth and epistasis tests involving all pairwise combinations of fluffy mutations indicate complex hierarchical relationships among these loci. We discuss these genetic interactions and propose that there are multiple mechanisms for activating brlA.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012100 Reproduction, Asexual Reproduction without fusion of two types of cells, mostly found in ALGAE; FUNGI; and PLANTS. Asexual reproduction occurs in several ways, such as budding, fission, or splitting from "parent" cells. Only few groups of ANIMALS reproduce asexually or unisexually (PARTHENOGENESIS). Asexual Reproduction,Asexual Reproductions,Reproductions, Asexual
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004843 Epistasis, Genetic A form of gene interaction whereby the expression of one gene interferes with or masks the expression of a different gene or genes. Genes whose expression interferes with or masks the effects of other genes are said to be epistatic to the effected genes. Genes whose expression is affected (blocked or masked) are hypostatic to the interfering genes. Deviation, Epistatic,Epistatic Deviation,Genes, Epistatic,Genes, Hypostatic,Epistases, Genetic,Gene-Gene Interaction, Epistatic,Gene-Gene Interactions, Epistatic,Genetic Epistases,Genetic Epistasis,Interaction Deviation,Non-Allelic Gene Interactions,Epistatic Gene,Epistatic Gene-Gene Interaction,Epistatic Gene-Gene Interactions,Epistatic Genes,Gene Gene Interaction, Epistatic,Gene Gene Interactions, Epistatic,Gene Interaction, Non-Allelic,Gene Interactions, Non-Allelic,Gene, Epistatic,Gene, Hypostatic,Hypostatic Gene,Hypostatic Genes,Interaction, Epistatic Gene-Gene,Interaction, Non-Allelic Gene,Interactions, Epistatic Gene-Gene,Interactions, Non-Allelic Gene,Non Allelic Gene Interactions,Non-Allelic Gene Interaction
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

J Wieser, and B N Lee, and J w Fondon, and T H Adams
April 2006, Journal of genetics,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
January 2006, Biological research,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
March 1998, Microbiology and molecular biology reviews : MMBR,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
March 2006, Genetics,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
December 2010, Trends in microbiology,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
September 2018, Folia microbiologica,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
May 2014, Genetics,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
October 2008, Eukaryotic cell,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
June 1988, Trends in genetics : TIG,
J Wieser, and B N Lee, and J w Fondon, and T H Adams
January 2008, Eukaryotic cell,
Copied contents to your clipboard!